Publications
Back-illuminated three-dimensionally integrated CMOS image sensors for scientific applications
Summary
Summary
SOI-based active pixel image sensors have been built in both monolithic and vertically interconnected pixel technologies. The latter easily supports the inclusion of more complex pixel circuitry without compromising pixel fill factor. A wafer-scale back-illumination process is used to achieve 100% fill factor photodiodes. Results from 256 x 256 and...
Multifocal multiphoton microscopy (MMM) at a frame rate beyond 600 Hz
Summary
Summary
We introduce a multiphoton microscope for high-speed three-dimensional (3D) fluorescence imaging. The system combines parallel illumination by a multifocal multiphoton microscope (MMM) with parallel detection via a segmented high-sensitivity charge-couple device (CCD) camera. The instrument consists of a Ti-sapphire laser illuminating a microlens array that projects 36 foci onto the...
Arrays of InP-based avalanche photodiodes for photon counting
Summary
Summary
Arrays of InP-based avalanche photodiodes (APDs) with InGaAsP absorber regions have been fabricated and characterized in the Geiger mode for photon-counting applications. Measurements of APDs with InGaAsP absorbers optimized for 1.06 um wavelength show dark count rates (DCRs)
Orthogonal transfer arrays for wide-field adaptive imaging
Summary
Summary
The orthogonal transfer array (OTA) is a novel charge-coupled device (CCD) imager based on the orthogonal-transfer CCD (OTCCD). The OTCCD, in turn, is a device capable of charge transfer in all directions and has been developed for adaptive imaging in ground-based astronomy. By using a bright guide star as a...
A wafer-scale 3-D circuit integration technology
Summary
Summary
The rationale and development of a wafer-scale three-dimensional (3-D) integrated circuit technology are described. The essential elements of the 3-D technology are integrated circuit fabrication on silicon-on-insulator wafers, precision wafer-wafer alignment using an in-house-developed alignment system, low-temperature wafer-wafer bonding to transfer and stack active circuit layers, and interconnection of the...
Lincoln Laboratory high-speed solid-state imager technology
Summary
Summary
Massachusetts Institute of Technology, Lincoln Laboratory (MIT LL) has been developing both continuous and burst solid-state focal-plane-array technology for a variety of high-speed imaging applications. For continuous imaging, a 128 ¿ 128-pixel charge coupled device (CCD) has been fabricated with multiple output ports for operating rates greater than 10,000 frames...
Laser radar imager based on 3D integration of Geiger-mode avalanche photodiodes with two SOI timing circuit layers
Summary
Summary
We have developed focal-plane arrays and laser-radar (ladar) imaging systems based on Geiger-mode avalanche photodiodes (APDs) integrated with high-speed all-digital CMOS timing circuits. A Geiger-mode APD produces a digital pulse upon detection of a single photon. This pulse is used to stop a fast digital counter in the pixel circuit...
Megapixel CMOS image sensor fabricated in three-dimensional integrated circuit technology
Summary
Summary
In this paper a 3D integrated 1024x1024, 8um pixel visible image sensor fabricated with oxide-to-oxide wafer bonding and 2-um square 3-D-vias in every pixel is presented. The 150mm wafer technology integrates a low-leakage, deep-depletion, 100% fill factor photodiode layer to a 3.3-V, 0.35-um gate length fully depleted (FD) SOI CMOS...
LLiST - a new star tracker camera for tip-tilt correction at IOTA
Summary
Summary
The tip-tilt correction system at the Infrared Optical Telescope Array (IOTA) has been upgraded with a new star tracker camera. The camera features a backside-illuminated CCD chip offering doubled overall quantum efficiency and a four times higher system gain compared to the previous system. Tests carried out to characterize the...
The orthogonal-transfer array: a new CCD architecture for astronomy
Summary
Summary
The orthogonal-transfer array (OTA) is a new CCD architecture designed to provide wide-field tip-tilt correction of astronomical images. The device consists of an 8..8 array of small (~500x500 pixels) orthogonal-transfer CCDs (OTCCD) with independent addressing and readout of each OTCCD. This approach enables an optimum tip-tilt correction to be applied...