Publications

Refine Results

(Filters Applied) Clear All

Smart pixel imaging with computational-imaging arrays

Published in:
SPIE, Vol. 9070, Infrared Technology and Applications XL, 5 May 2014, 90703D.

Summary

Smart pixel imaging with computational-imaging arrays (SPICA) transfers image plane coding typically realized in the optical architecture to the digital domain of the focal plan array, thereby minimizing signal-to-noise losses associated with static filters or apertures and inherent diffraction concerns. MIT Lincoln Laboratory has been developing digital-pixel focal plane array (DFPA) devices for many years. In this work, we leverage legacy designs modified with new features to realize a computational imaging array (CIA) with advanced pixel-processing capabilities. We briefly review the use of DFPAs for on-chip background removal and image plane filtering. We focus on two digital readout integrated circuits (DROICS) as CIAs for two-dimensional (2D) transient target tracking and three-dimensional (3) transient target estimation using per-pixel coded-apertures or flutter shutters. This paper describes two DROICs -- a SWIR pixel-processing imager (SWIR-PPI) and a Visible CIA (VISCIA). SWIR-PPI is a DROIC with a 1 kHz global frame rate with a maximum per-pixel shuttering rate of 100 MHz, such that each pixel can be modulated by a time-varying, pseudo-random, and duo-binary signal (+1,-1,0). Combining per-pixel time-domain coding and processing enables 3D (x,y,T) target estimation with limited loss of spatial resolution. We evaluate structured and pseudo-random encoding strategies and employ linear inversion and non-linear inversion using total-variation minimization to estimate a 3D data cube from a single 2D temporally-encoded measurement. The VISCIA DROIC, while low-resolution, has a 6 kHz global frame rate and simultaneously encodes eight periodic or aperiodic transient target signatures at a maximum rate of 50 MHz using eight 8-bit counters. By transferring pixel-based image plane coding to the DROIC and utilizing sophisticated processing, our CIAs enable on-chip temporal super-resolution.
READ LESS

Summary

Smart pixel imaging with computational-imaging arrays (SPICA) transfers image plane coding typically realized in the optical architecture to the digital domain of the focal plan array, thereby minimizing signal-to-noise losses associated with static filters or apertures and inherent diffraction concerns. MIT Lincoln Laboratory has been developing digital-pixel focal plane array...

READ MORE

SET characterization in logic circuits fabricated in a 3DIC technology

Summary

Single event transients are characterized for the first time in logic gate circuits fabricated in a novel 3DIC technology where SET test circuits are vertically integrated on three tiers in a 20-um-thick layer. This 3D technology is extremely will suited for high-density circuit integration because of the small dimension the tier-to-tier circuit interconnects, which are 1.25-um-wide-through-oxide-vias. Transient pulse width distributions were characterized simultaneously on each tier during exposure to krypton heavy ions. The difference in SET pulse width and cross-section among the three tiers is discussed. Experimental test results are explaine dby considering the electrical characteristics of the FETs on the 2D wafers before 3D integration, and by considering the energy deposited by the Kr ions passing through the various material laters of the 3DIC stack. We also show that the backmetal layer available on the upper tiers can be used to tune independently the nFET and pFET current drive, and change the SET pulse width and cross-section. This 3DIC technology appears to be a good candidate for space applications.
READ LESS

Summary

Single event transients are characterized for the first time in logic gate circuits fabricated in a novel 3DIC technology where SET test circuits are vertically integrated on three tiers in a 20-um-thick layer. This 3D technology is extremely will suited for high-density circuit integration because of the small dimension the...

READ MORE

Geiger-mode quad-cell array for adaptive optics

Published in:
CLEO-QELS, 2008 Conf. on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conf., 4-9 May 2008.

Summary

We report an array of Shack-Hartmann wavefront sensors using high-fill-factor Geiger-mode avalanche detector quad cells hybridized to all-digital CMOS counting circuits. The absence of readout noise facilitates fast wavefront sensing at low light levels.
READ LESS

Summary

We report an array of Shack-Hartmann wavefront sensors using high-fill-factor Geiger-mode avalanche detector quad cells hybridized to all-digital CMOS counting circuits. The absence of readout noise facilitates fast wavefront sensing at low light levels.

READ MORE

Arrays of InP-based avalanche photodiodes for photon counting

Summary

Arrays of InP-based avalanche photodiodes (APDs) with InGaAsP absorber regions have been fabricated and characterized in the Geiger mode for photon-counting applications. Measurements of APDs with InGaAsP absorbers optimized for 1.06 um wavelength show dark count rates (DCRs)
READ LESS

Summary

Arrays of InP-based avalanche photodiodes (APDs) with InGaAsP absorber regions have been fabricated and characterized in the Geiger mode for photon-counting applications. Measurements of APDs with InGaAsP absorbers optimized for 1.06 um wavelength show dark count rates (DCRs)

READ MORE

Laser radar imager based on 3D integration of Geiger-mode avalanche photodiodes with two SOI timing circuit layers

Summary

We have developed focal-plane arrays and laser-radar (ladar) imaging systems based on Geiger-mode avalanche photodiodes (APDs) integrated with high-speed all-digital CMOS timing circuits. A Geiger-mode APD produces a digital pulse upon detection of a single photon. This pulse is used to stop a fast digital counter in the pixel circuit, thereby measuring photon arrival time. This "photon-to-digital conversion" yields quantum-limited sensitivity and noiseless readout, enabling high-performance ladar systems. Previously reported focal planes, based on bump bonding or epoxy bonding the APDs to foundry chips, had coarse (100um) pixel spacing and 0.5ns timing quantization.
READ LESS

Summary

We have developed focal-plane arrays and laser-radar (ladar) imaging systems based on Geiger-mode avalanche photodiodes (APDs) integrated with high-speed all-digital CMOS timing circuits. A Geiger-mode APD produces a digital pulse upon detection of a single photon. This pulse is used to stop a fast digital counter in the pixel circuit...

READ MORE

Showing Results

1-5 of 5