Publications

Refine Results

(Filters Applied) Clear All

Germanium CCDs for large-format SWIR and x-ray imaging

Summary

Germanium exhibits high sensitivity to short-wave infrared (SWIR) and X-ray radiation, making it an interesting candidate for imaging applications in these bands. Recent advances in germanium processing allow for high-quality charge-coupled devices (CCDs) to be realized in this material. In this article, we discuss our evaluation of germanium as an absorber material for CCDs via fabrication and analysis of discrete devices such as diodes, metal-insulator-semiconductor capacitors, and buried-channel metal-oxide-semiconductor field-effect transistors (MOSFETs). We then describe fabrication of our first imaging device on germanium, a 32 x 1 x 8.1 um linear shift register. Based on this work, we find that germanium is a promising material for CCDs imaging in the SWIR and X-ray bands.
READ LESS

Summary

Germanium exhibits high sensitivity to short-wave infrared (SWIR) and X-ray radiation, making it an interesting candidate for imaging applications in these bands. Recent advances in germanium processing allow for high-quality charge-coupled devices (CCDs) to be realized in this material. In this article, we discuss our evaluation of germanium as an...

READ MORE

Orthogonal transfer arrays for wide-field adaptive imaging

Published in:
Proc. 2007 Int. Image Sensor Workshop, 7-10 June 2007.

Summary

The orthogonal transfer array (OTA) is a novel charge-coupled device (CCD) imager based on the orthogonal-transfer CCD (OTCCD). The OTCCD, in turn, is a device capable of charge transfer in all directions and has been developed for adaptive imaging in ground-based astronomy. By using a bright guide star as a beacon, the OTCCD can correct for wavefront tilt due to atmospheric effects as well as compensation for telescope shake, which in turn enhances the resolution and SNR. However, for wide field-of-view imaging the atmospheric wavefront distortions decorrelate over distances more than a few 10's of arcmin and hence an array of independently driven OTCCDs is required. To resolve this issue we developed the OTA, which consists of a two-dimensional array of OTCCDs combined with addressing and control logic to enable independent clocking of each OTCCD. This device enables spatially varying electronic tip-tilt correction and was developed for the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) program at the University of Hawaii Institute for Astronomy (UH/IfA)
READ LESS

Summary

The orthogonal transfer array (OTA) is a novel charge-coupled device (CCD) imager based on the orthogonal-transfer CCD (OTCCD). The OTCCD, in turn, is a device capable of charge transfer in all directions and has been developed for adaptive imaging in ground-based astronomy. By using a bright guide star as a...

READ MORE

The orthogonal-transfer array: a new CCD architecture for astronomy

Published in:
SPIE Vol. 5499, Optical and Infrared Detectors for Astronomy, 21 June 2004, pp. 185-192.

Summary

The orthogonal-transfer array (OTA) is a new CCD architecture designed to provide wide-field tip-tilt correction of astronomical images. The device consists of an 8..8 array of small (~500x500 pixels) orthogonal-transfer CCDs (OTCCD) with independent addressing and readout of each OTCCD. This approach enables an optimum tip-tilt correction to be applied independently to each OTCCD across the focal plane. The first design of this device has been carried out at MIT Lincoln Laboratory in support of the Pan-STARRS program with a collaborative parallel effort at Semiconductor Technology Associates (STA) for the WIYN Observatory. The two versions of this device are functionally compatible and share a common pinout and package. The first wafer lots are complete at Lincoln and at Dalsa and are undergoing wafer probing.
READ LESS

Summary

The orthogonal-transfer array (OTA) is a new CCD architecture designed to provide wide-field tip-tilt correction of astronomical images. The device consists of an 8..8 array of small (~500x500 pixels) orthogonal-transfer CCDs (OTCCD) with independent addressing and readout of each OTCCD. This approach enables an optimum tip-tilt correction to be applied...

READ MORE

Broadband (200-1000 nm) back-illuminated ccd imagers

Summary

Improved and stable blue/UV quantum efficiency has been demonstrated on 2Kx4K imagers using molecular-beam epitaxy to create a thin doped layer on the back surface. Quantum efficiency data on thick (40-50 pm) imagers with single and dual-layer anti-reflection coatings is presented that demonstrates high and broadband response. Measurements of the optical point-spread response show the devices to be fully depleted with good response across a broad spectrum, but interesting features appear in the near-IR as a result of deeply penetrating light being scattered off the surface structure of the CCD.
READ LESS

Summary

Improved and stable blue/UV quantum efficiency has been demonstrated on 2Kx4K imagers using molecular-beam epitaxy to create a thin doped layer on the back surface. Quantum efficiency data on thick (40-50 pm) imagers with single and dual-layer anti-reflection coatings is presented that demonstrates high and broadband response. Measurements of the...

READ MORE

Silicon-on-insulator-based single-chip image sensors: low-voltage scientific imaging

Published in:
Experimental Astronomy, Vol. 14, No. 2, 2002, pp. 91-98.

Summary

A low-voltage (
READ LESS

Summary

A low-voltage (

READ MORE

Monolithic 3.3V CCD/SOI-CMOS Imager Technology

Summary

We have developed a merged CCD/SOI-CMOS technology that enables the fabrication of monolithic, low-power imaging systems on a chip. The CCD's, fabricated in the bulk handle wafer, have charge-transfer inefficiencies of about 1x10(-5) and well capacities of more than 100,000 electrons with 3.3-V clocks and 8x8um pixels. Fully depleted 0.35pm SOI-CMOS ring oscillators have stage delay of 48ps at 3.3V. We demonstrate for the first time an integrated image sensor with charge-domain A/D conversion and on-chip clocking.
READ LESS

Summary

We have developed a merged CCD/SOI-CMOS technology that enables the fabrication of monolithic, low-power imaging systems on a chip. The CCD's, fabricated in the bulk handle wafer, have charge-transfer inefficiencies of about 1x10(-5) and well capacities of more than 100,000 electrons with 3.3-V clocks and 8x8um pixels. Fully depleted 0.35pm...

READ MORE

SOI wafer selection for CCD/SOI-CMOS technology [Abstract]

Published in:
2000 IEEE Int. SOI Conf. Proc., 2-5 October 2000, pp. 136-137.

Summary

We have developed a process that monolithically integrates fully depleted SOI CMOS (FDSOI) with high-performance CCD image sensors. This integrated technology that enables charged-coupled devices (CCD's) to be in close proximity to, yet isolated from, FDSOI circuits. This approach exploits both the advantages of FDSOI (fast, low-power CMOS with potentially enhanced radiation performance) and those of CCD's (high quantum efftciency, low noise, and architectural flexibility). This 3.3 V, 0.3 mu m CCD/FDSOI-CMOS technology thus enables fabrication of low-power, compact imaging systems. Material requirements for CCD imagers are perhaps the most stringent of any device and require special attention to the quality of the bulk or handle wafer. We report here characterization of various SOI handle wafers for use in fabrication of bulk imaging devices.
READ LESS

Summary

We have developed a process that monolithically integrates fully depleted SOI CMOS (FDSOI) with high-performance CCD image sensors. This integrated technology that enables charged-coupled devices (CCD's) to be in close proximity to, yet isolated from, FDSOI circuits. This approach exploits both the advantages of FDSOI (fast, low-power CMOS with potentially...

READ MORE

Showing Results

1-7 of 7