Publications
Uniformity study of wafer-scale InP-to-silicon hybrid integration
Summary
Summary
In this paper we study the uniformity of up to 150 mm in diameter wafer-scale III-V epitaxial transfer to the Si-on-insulator substrate through the O2 plasma-enhanced low-temperature (300°C) direct wafer bonding. Void-free bonding is demonstrated by the scanning acoustic microscopy with sub-um resolution. The photoluminescence (PL) map shows less than...
Wafer-scale 3D integration of InGaAs image sensors with Si readout circuits
Summary
Summary
In this work, we modified our wafer-scale 3D integration technique, originally developed for Si, to hybridize InP-based image sensor arrays with Si readout circuits. InGaAs image arrays based on the InGaAs layer grown on InP substrates were fabricated in the same processing line as silicon-on-insulator (SOI) readout circuits. The finished...
High-quality 150 nm InP-to-silicon epitaxial transfer for silicon photonic integrated circuits
Summary
Summary
We demonstrate the transfer of the largest (150 mm in diameter) available InP-based epitaxial structure to the silicon-on-insulator substrate through a direct wafer-bonding process. Over 95% bonding yield and a void-free bonding interface was obtained. A multiple quantum-well diode laser structure is well-preserved after bonding, as indicated by the high-resolution...
Reliable large format arrays of Geiger-mode avalanche photodiodes
Summary
Summary
The fabrication of reliable InP-based Geigermode avalanche photodiode arrays is described. Arrays of up to 256 x 64 elements have been produced and mated to silicon read-out circuits forming single-photon infrared focal plane imagers for 1.06 and 1.5 mum applications.
Slab-coupled optical waveguide photodiode
Summary
Summary
We report the first high-current photodiode based on the slab-coupled optical waveguide concept. The device has a large mode (5.8 x 7.6 um) and ultra-low optical confinement ([] ~ 0.05%), allowing a 2-mm absorption length. The maximum photocurrent obtained was 250 mA (R = 0.8-A/W) at 1.55 um.
Organometallic vapor phase epitaxy of relaxed InPAs/InP as multiplication layers for avalanche photodiodes
Summary
Summary
InP1-yAsy epitaxial layers grown lattice-mismatched (LMM) on InP substrates were investigated as a new materials system for multiplication layers in Geiger-mode avalanche photodiodes (GM APDs) for detection of photons in the range 1.6-2.5 mm. LMM InP1-yAsy epilayers were grown on semi-insulating (1 0 0) InP substrates misoriented 0.2 and 2...
Arrays of InP-based avalanche photodiodes for photon counting
Summary
Summary
Arrays of InP-based avalanche photodiodes (APDs) with InGaAsP absorber regions have been fabricated and characterized in the Geiger mode for photon-counting applications. Measurements of APDs with InGaAsP absorbers optimized for 1.06 um wavelength show dark count rates (DCRs)