Publications

Refine Results

(Filters Applied) Clear All

Uniformity study of wafer-scale InP-to-silicon hybrid integration

Published in:
Appl. Phys. A, Mat. Sci. & Process., Vol. 103, No. 1, April 2011, pp. 213-218.

Summary

In this paper we study the uniformity of up to 150 mm in diameter wafer-scale III-V epitaxial transfer to the Si-on-insulator substrate through the O2 plasma-enhanced low-temperature (300°C) direct wafer bonding. Void-free bonding is demonstrated by the scanning acoustic microscopy with sub-um resolution. The photoluminescence (PL) map shows less than 1 nm change in average peak wavelength, and even improved peak intensity (4% better) and full width at half maximum (41% better) after 150 mm in diameter epitaxial transfer. Small and uniformly distributed residual strain in all sizes of bonding, which is measured by high-resolution X-ray diffraction Omega- 2Theta mapping, and employment of a two-period InP-InGaAsP superlattice at the bonding interface contributes to the improvement of PL response. Preservation of multiple quantum-well integrity is also verified by high-resolution transmission electron microscopy.
READ LESS

Summary

In this paper we study the uniformity of up to 150 mm in diameter wafer-scale III-V epitaxial transfer to the Si-on-insulator substrate through the O2 plasma-enhanced low-temperature (300°C) direct wafer bonding. Void-free bonding is demonstrated by the scanning acoustic microscopy with sub-um resolution. The photoluminescence (PL) map shows less than...

READ MORE

Wafer-scale 3D integration of InGaAs image sensors with Si readout circuits

Summary

In this work, we modified our wafer-scale 3D integration technique, originally developed for Si, to hybridize InP-based image sensor arrays with Si readout circuits. InGaAs image arrays based on the InGaAs layer grown on InP substrates were fabricated in the same processing line as silicon-on-insulator (SOI) readout circuits. The finished 150-mm-diameter InP wafer was then directly bonded to the SOI wafer and interconnected to the Si readout circuits by 3D vias. A 1024 x 1024 diode array with 8-um pixel size is demonstrated. This work shows the wafer-scale 3D integration of a compound semiconductor with Si.
READ LESS

Summary

In this work, we modified our wafer-scale 3D integration technique, originally developed for Si, to hybridize InP-based image sensor arrays with Si readout circuits. InGaAs image arrays based on the InGaAs layer grown on InP substrates were fabricated in the same processing line as silicon-on-insulator (SOI) readout circuits. The finished...

READ MORE

High-quality 150 nm InP-to-silicon epitaxial transfer for silicon photonic integrated circuits

Published in:
Electrochem. Solid-State Lett., Vol. 12, No. 4, January 2009, pp. H101-H104.

Summary

We demonstrate the transfer of the largest (150 mm in diameter) available InP-based epitaxial structure to the silicon-on-insulator substrate through a direct wafer-bonding process. Over 95% bonding yield and a void-free bonding interface was obtained. A multiple quantum-well diode laser structure is well-preserved after bonding, as indicated by the high-resolution X-ray diffraction measurement and photoluminescence (PL) map. A bowing of 64.12 um is measured, resulting in a low bonding-induced strain of 17 MPa. PL measurement shows a standard deviation of 1.09% across the entire bonded area with less than 1.1 nm wavelength shift from the as-grown wafer.
READ LESS

Summary

We demonstrate the transfer of the largest (150 mm in diameter) available InP-based epitaxial structure to the silicon-on-insulator substrate through a direct wafer-bonding process. Over 95% bonding yield and a void-free bonding interface was obtained. A multiple quantum-well diode laser structure is well-preserved after bonding, as indicated by the high-resolution...

READ MORE

Reliable large format arrays of Geiger-mode avalanche photodiodes

Published in:
IPRM 2008, 20th Int. Conf. on Indium Phosphide and Related Materials, 25-29 May 2008.
Topic:

Summary

The fabrication of reliable InP-based Geigermode avalanche photodiode arrays is described. Arrays of up to 256 x 64 elements have been produced and mated to silicon read-out circuits forming single-photon infrared focal plane imagers for 1.06 and 1.5 mum applications.
READ LESS

Summary

The fabrication of reliable InP-based Geigermode avalanche photodiode arrays is described. Arrays of up to 256 x 64 elements have been produced and mated to silicon read-out circuits forming single-photon infrared focal plane imagers for 1.06 and 1.5 mum applications.

READ MORE

Slab-coupled optical waveguide photodiode

Published in:
CLEO-QELS, 2008 Conf. on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conf., 4-9 May 2008.
Topic:

Summary

We report the first high-current photodiode based on the slab-coupled optical waveguide concept. The device has a large mode (5.8 x 7.6 um) and ultra-low optical confinement ([] ~ 0.05%), allowing a 2-mm absorption length. The maximum photocurrent obtained was 250 mA (R = 0.8-A/W) at 1.55 um.
READ LESS

Summary

We report the first high-current photodiode based on the slab-coupled optical waveguide concept. The device has a large mode (5.8 x 7.6 um) and ultra-low optical confinement ([] ~ 0.05%), allowing a 2-mm absorption length. The maximum photocurrent obtained was 250 mA (R = 0.8-A/W) at 1.55 um.

READ MORE

Organometallic vapor phase epitaxy of relaxed InPAs/InP as multiplication layers for avalanche photodiodes

Published in:
J. Cryst. Growth, Vol. 310, No. 7-9, April 2008, pp. 1583-1589 (Proc. 13th Int. Conf. on Crystal Growth, in conjunction with Int. Conf. on Vapor Growth and Epitaxy and US Biennial Workshop on Organometallic Vapor Phase Epitaxy, 12-17 August 2007).
Topic:

Summary

InP1-yAsy epitaxial layers grown lattice-mismatched (LMM) on InP substrates were investigated as a new materials system for multiplication layers in Geiger-mode avalanche photodiodes (GM APDs) for detection of photons in the range 1.6-2.5 mm. LMM InP1-yAsy epilayers were grown on semi-insulating (1 0 0) InP substrates misoriented 0.2 and 2 [1 1 0] by organometallic vapor phase epitaxy at a growth temperature of 580 1C. The growth scheme used for the InP1-yAsy buffer layer was optimized based on surface step structure and X-ray diffraction. It was found that step-flow growth is a minimum criterion for obtaining good material quality. A narrower XRD full-width at half-maximum values were measured for 21-miscut substrates compared to 0.21-miscut substrates. A highquality buffer was obtained by step-grading the InP1-yAsy composition in increments of y = 0.05 over a layer thickness of 0.5 mm to a final y = 0.25. The device performance of LMM GM APDs was compared to that of measured more traditional lattice-matched GaSbbased devices. At 77 K, dark count rates of LMM devices are ~50 kHz at 5V overbias, and are comparable to GaSb-based p-i-n diodes operated in Geiger mode, while reset times of 0.02 ms are approximately 3 orders of magnitude lower than GaSb-based GM APDs.
READ LESS

Summary

InP1-yAsy epitaxial layers grown lattice-mismatched (LMM) on InP substrates were investigated as a new materials system for multiplication layers in Geiger-mode avalanche photodiodes (GM APDs) for detection of photons in the range 1.6-2.5 mm. LMM InP1-yAsy epilayers were grown on semi-insulating (1 0 0) InP substrates misoriented 0.2 and 2...

READ MORE

Arrays of InP-based avalanche photodiodes for photon counting

Summary

Arrays of InP-based avalanche photodiodes (APDs) with InGaAsP absorber regions have been fabricated and characterized in the Geiger mode for photon-counting applications. Measurements of APDs with InGaAsP absorbers optimized for 1.06 um wavelength show dark count rates (DCRs)
READ LESS

Summary

Arrays of InP-based avalanche photodiodes (APDs) with InGaAsP absorber regions have been fabricated and characterized in the Geiger mode for photon-counting applications. Measurements of APDs with InGaAsP absorbers optimized for 1.06 um wavelength show dark count rates (DCRs)

READ MORE

Showing Results

1-7 of 7