Publications
MOVPE growth of LWIR AlInAs/GaInAs/InP quantum cascade lasers: impact of growth and material quality on laser performance
Summary
Summary
The quality of epitaxial layers in quantum cascade lasers (QCLs) has a primary impact on QCL performance, and establishing correlations between epitaxial growth and materials properties is of critical importance for continuing improvements. We present an overview of the growth challenges of these complex QCL structures; describe the metalorganic vapor...
Crosstalk characterization and mitigation in Geiger-mode avalanche photodiode arrays
Summary
Summary
Intra focal plane array (FPA) crosstalk is a primary development limiter of large, fine-pixel Geiger-mode avalanche photodiode (Gm-APD) arrays beyond 256×256 pixels. General analysis methods and results from MIT Lincoln Laboratory (MIT/LL) InP-based detector arrays will be presented.
Coherent beam-combining of quantum cascade amplifier arrays
Summary
Summary
We present design, packaging and coherent beam combining of quantum cascade amplifier (QCA) arrays, measurements of QCA phase noise, the drive-current-to-optical-phase transfer function, and the small signal gain for QCAs.
Model of turn-on characteristics of InP-based Geiger-mode avalanche photodiodes suitable for circuit simulations
Summary
Summary
A model for the turn-on characteristics of separate-absorber-multiplier InP-based Geiger-mode Avalanche Photodiodes (APDs) has been developed. Verilog-A was used to implement the model in a manner that can be incorporated into circuit simulations. Rather than using SPICE elements to mimic the voltage and current characteristics of the APD, Verilog-A can...
Impact ionization in AlxGa1-xASySb1-y avalanche photodiodes
Summary
Summary
Avalanche photodiodes (APDs) have been fabricated in order to determine the impact ionization coefficients of electrons (alpha) and holes (beta) in AlxGa1-xAsySb1-y lattice matched to GaSb for three alloy compositions: (x=0.40, y=0.035), (x=0.55, y=0.045), and (x=0.65, y=0.054). The impact ionization coefficients were calculated from photomultiplication measurements made on specially designed...
High-power, low-noise 1.5-um slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications
Summary
Summary
We review the development of a new class of high-power, edge-emitting, semiconductor optical gain medium based on the slab-coupled optical waveguide (SCOW) concept. We restrict the scope to InP-based devices incorporating either InGaAsP or InGaAlAs quantum-well active regions and operating in the 1.5-μm-wavelength region. Key properties of the SCOW gain...
Wafer-scale 3D integration of InGaAs image sensors with Si readout circuits
Summary
Summary
In this work, we modified our wafer-scale 3D integration technique, originally developed for Si, to hybridize InP-based image sensor arrays with Si readout circuits. InGaAs image arrays based on the InGaAs layer grown on InP substrates were fabricated in the same processing line as silicon-on-insulator (SOI) readout circuits. The finished...
InP-based single-photon detector arrays with asynchronous readout integrated circuits
Summary
Summary
We have developed and demonstrated a highduty- cycle asynchronous InGaAsP-based photon counting detector system with near-ideal Poisson response, roomtemperature operation, and nanosecond timing resolution for near-infrared applications. The detector is based on an array of Geiger-mode avalanche photodiodes coupled to a custom integrated circuit that provides for lossless readout via...
Reliable large format arrays of Geiger-mode avalanche photodiodes
Summary
Summary
The fabrication of reliable InP-based Geigermode avalanche photodiode arrays is described. Arrays of up to 256 x 64 elements have been produced and mated to silicon read-out circuits forming single-photon infrared focal plane imagers for 1.06 and 1.5 mum applications.
Organometallic vapor phase epitaxy of relaxed InPAs/InP as multiplication layers for avalanche photodiodes
Summary
Summary
InP1-yAsy epitaxial layers grown lattice-mismatched (LMM) on InP substrates were investigated as a new materials system for multiplication layers in Geiger-mode avalanche photodiodes (GM APDs) for detection of photons in the range 1.6-2.5 mm. LMM InP1-yAsy epilayers were grown on semi-insulating (1 0 0) InP substrates misoriented 0.2 and 2...