Publications
Characterization of a three-dimensional SOI integrated-circuit technology
Summary
Summary
At Lincoln Laboratory, we have established a three dimensional (3D) integrated circuit (IC) technology that has been developed and demonstrated over eight designs, bonding two or three active circuit layers or tiers to form monolithically integrated 3D circuits. This technology has been used to successfully demonstrate a large-area 8 x...
A 64 x 64-pixel CMOS test chip for the development of large-format ultra-high-speed snapshot imagers
Summary
Summary
A 64 x 64-pixel test circuit was designed and fabricated in 0.18- m CMOS technology for investigating high-speed imaging with large-format imagers. Several features are integrated into the circuit architecture to achieve fast exposure times with low-skew and jitter for simultaneous pixel snapshots. These features include an H-tree clock distribution...
Integration of high-speed surface-channel charge coupled devices into an SOI CMOS process using strong phase shift lithography
Summary
Summary
To enable development of novel signal processing circuits, a high-speed surface-channel charge coupled device (CCD) process has been co-integrated with the Lincoln Laboratory 180-nm RF fully depleted silicon-on-insulator (FDSOI) CMOS technology. The CCDs support charge transfer clock speeds in excess of 1 GHz while maintaining high charge transfer efficiency (CTE)...
Design approaches for digitally dominated active pixel sensors: leveraging Moore's law scaling in focal plane readout design
Summary
Summary
Although CMOS technology scaling has provided tremendous power and circuit density benefits for innumerable applications, focal plane array (FPA) readouts have largely been left behind due to dynamic range and signal-to-noise considerations. However, if an appropriate pixel front end can be constructed to interface with a mostly digital pixel, it...
Arrays of InP-based avalanche photodiodes for photon counting
Summary
Summary
Arrays of InP-based avalanche photodiodes (APDs) with InGaAsP absorber regions have been fabricated and characterized in the Geiger mode for photon-counting applications. Measurements of APDs with InGaAsP absorbers optimized for 1.06 um wavelength show dark count rates (DCRs)
The digital focal plane array (DFPA) architecture for data processing "on-chip"
Summary
Summary
The digital focal plane array (DFPA) project seeks to develop readout integrated circuits (ROICs) utilizing aggressively scaled and commercially available CMOS. Along with focal plane scaling and readout robustness benefits, the DFPA architecture provides a very simple way to implement processing algorithms directly on image data, in real-time, and prior...
Lincoln Laboratory high-speed solid-state imager technology
Summary
Summary
Massachusetts Institute of Technology, Lincoln Laboratory (MIT LL) has been developing both continuous and burst solid-state focal-plane-array technology for a variety of high-speed imaging applications. For continuous imaging, a 128 ¿ 128-pixel charge coupled device (CCD) has been fabricated with multiple output ports for operating rates greater than 10,000 frames...
Megapixel CMOS image sensor fabricated in three-dimensional integrated circuit technology
Summary
Summary
In this paper a 3D integrated 1024x1024, 8um pixel visible image sensor fabricated with oxide-to-oxide wafer bonding and 2-um square 3-D-vias in every pixel is presented. The 150mm wafer technology integrates a low-leakage, deep-depletion, 100% fill factor photodiode layer to a 3.3-V, 0.35-um gate length fully depleted (FD) SOI CMOS...
Investigation of the physical and practical limits of dense-only phase shift lithography for circuit feature definition
Summary
Summary
The rise of low- k1 optical lithography in integrated circuit manufacturing has introduced new questions concerning the physical and practical limits of particular subwavelength resolution-enhanced imaging approaches. For a given application, trade-offs between mask complexity, design cycle time, process latitude and process throughput must be well understood. It has recently...