Publications
Tagged As
Chip-scale molecular clock
Summary
Summary
An ultra-stable time-keeping device is presented, which locks its output clock frequency to the rotational-mode transition of polar gaseous molecules. Based on a high-precision spectrometer in the sub-terahertz (THz) range, our new clocking scheme realizes not only fully electronic operation but also implementations using mainstream CMOS technology. Meanwhile, the small...
High-resolution, high-throughput, CMOS-compatible electron beam patterning
Summary
Summary
Two scanning electron beam lithography (SEBL) patterning processes have been developed, one positive and one negative tone. The processes feature nanometer-scale resolution, chemical amplification for faster throughput, long film life under vacuum, and sufficient etch resistance to enable patterning of a variety of materials with a metal-free (CMOS/MEMS compatible) tool...
Enhancing the far-ultraviolet sensitivity of silicon complementary metal oxide semiconductor imaging arrays
Summary
Summary
We report our progress toward optimizing backside-illuminated silicon P-type intrinsic N-type complementary metal oxide semiconductor devices developed by Teledyne Imaging Sensors (TIS) for far-ultraviolet (UV) planetary science applications. This project was motivated by initial measurements at Southwest Research Institute of the far-UV responsivity of backside-illuminated silicon PIN photodiode test structures...
Digital pixel CMOS focal plane array with on-chip multiply accumulate units for low-latency image processing
Summary
Summary
A digital pixel CMOS focal plane array has been developed to enable low latency implementations of image processing systems such as centroid trackers, Shack-Hartman wavefront sensors, and Fitts correlation trackers through the use of in-pixel digital signal processing (DSP) and generic parallel pipelined multiply accumulate (MAC) units. Light intensity digitization...
Single event transients in digital CMOS - a review
Summary
Summary
The creation of soft errors due to the propagation of single event transients (SETs) is a significant reliability challenge in modern CMOS logic. SET concerns continue to be exacerbated by Moore's Law technology scaling. This paper presents a review of digital single event transient research, including: a brief historical overview...
Improvement of SOI MOSFET RF performance by implant optimization
Summary
Summary
The characteristics of silicon on insulator MOSFETs are modified to enhance the RF performance by varying channel implants. Without adding new masks or fabrication steps to the standard CMOS process, this approach can be easily applied in standard foundry fabrication. The transconductance, output resistance, and breakdown voltage can be increased...
Effects of ionizing radiation on digital single event transients in a 180-nm fully depleted SOI process
Summary
Summary
Effects of ionizing radiation on single event transients are reported for Fully Depleted SOI (FDSOI) technology using experiments and simulations. Logic circuits, i.e. CMOS inverter chains, were irradiated with cobalt-60 gamma radiation. When charge is induced in the n-channel FET with laser-probing techniques, laser-induced transients widen with increased total dose...
Channel engineering of SOI MOSFETs for RF applications
Summary
Summary
Channel engineering of SOI MOSFETs is explored by altering ion implantation without adding any new fabrication steps to the standard CMOS process. The effects of implantation on characteristics important for RF applications, such as transconductance, output resistance, breakdown voltage, are compared. Data show that the best overall RF MOSFET has...
High density plasma etching of titanium nitride metal gate electrodes for fully depleted silicon-on-insulator subthreshold transistor integration
Summary
Summary
Etching of TiN metal gate materials as a part of an integrated flow to fabricate fully depleted silicon-on-insulator ultralow-power transistors is reported. TiN etching is characterized as a function of source power, bias power, gas composition, and substrate temperature in a high density inductively coupled plasma reactor. Under the conditions...
A 4-side tileable back illuminated 3D-integrated Mpixel CMOS image sensor
Summary
Summary
The dominant trend with conventional image sensors is toward scaled-down pixel sizes to increase spatial resolution and decrease chip size and cost. While highly capable chips, these monolithic image sensors devote substantial perimeter area to signal acquisition and control circuitry and trade off pixel complexity for fill factor. For applications...