Publications
Large-format Geiger-mode avalanche photodiode arrays and readout circuits
Summary
Summary
Over the past 20 years, we have developed arrays of custom-fabricated silicon and InP Geiger-mode avalanche photodiode arrays, CMOS readout circuits to digitally count or time stamp single-photon detection events, and techniques to integrate these two components to make back-illuminated solid-state image sensors for lidar, optical communications, and passive imaging...
Photonic lantern kW-class fiber amplifier
Summary
Summary
Pump-limited kW-class operation in a multimode fiber amplifier using adaptive mode control and a photonic lantern front end was achieved. An array of three single-mode fiber inputs was used to adaptively inject the appropriate superposition of input modes in a three-mode gain fiber to achieve the desired mode at the...
Directly deposited optical-blocking filters for single-photon x-ray imaging spectroscopy
Summary
Summary
Directly deposited optical-blocking filters (DD OBFs) have the potential to improve filter performance and lower risk and cost for future x-ray imaging spectroscopy missions. However, they have not been fully characterized on high-performance charge coupled devices (CCDs). This paper reports the results of DD OBFs processed on high-performance photon-counting CCDs...
Germanium CCDs for large-format SWIR and x-ray imaging
Summary
Summary
Germanium exhibits high sensitivity to short-wave infrared (SWIR) and X-ray radiation, making it an interesting candidate for imaging applications in these bands. Recent advances in germanium processing allow for high-quality charge-coupled devices (CCDs) to be realized in this material. In this article, we discuss our evaluation of germanium as an...
Strong effect of azodye layer thickness on RM-stabilized photoalignment
Summary
Summary
We have previously proposed a process for stabilizing azodye photo-alignment layers using a surface localized reactive mesogen (RM) layer applied by dissolving the monomer in a liquid crystal prior to filling the cell. Surprisingly, thin azodye layers (~3 nm) exhibit improved stability upon exposure to polarized light compared to thicker...
High-efficiency large-angle Pancharatnam phase deflector based on dual-twist design
Summary
Summary
We have previously shown through simulation that an optical beam deflector based on the Pancharatnam (geometric) phase can provide high efficiency with up to 80° deflection using a dual-twist structure for polarization-state control [Appl. Opt. 54, 10035 (2015)]. In this report, we demonstrate that its optical performance is as predicted...
State of the art focal plane arrays of InP/InGaAsP Geiger-mode avalanche photodiodes for active electro-optical applications
Summary
Summary
MIT Lincoln Laboratory has developed InP/InGaAsP Geiger-Mode Avalanche Photodiodes and associated readout integrated circuits (ROICs) that have enabled numerous active optical systems over the past decade. Framed and asynchronous photon timing ROIC architectures have been demonstrated. In recent years, efforts at MITLL have focused on technology development to advance the...
Effects of humidity and surface on photoalignment of brilliant yellow
Summary
Summary
Controlling and optimising the alignment of liquid crystals is a crucial process for display application. Here, we investigate the effects of humidity and surface types on photoalignment of an azo-dye brilliant yellow (BY). Specifically, the effect of humidity on the photoalignment of BY was studied at the stage of substrate...
Crosstalk characterization and mitigation in Geiger-mode avalanche photodiode arrays
Summary
Summary
Intra focal plane array (FPA) crosstalk is a primary development limiter of large, fine-pixel Geiger-mode avalanche photodiode (Gm-APD) arrays beyond 256×256 pixels. General analysis methods and results from MIT Lincoln Laboratory (MIT/LL) InP-based detector arrays will be presented.
Liquid crystal uncooled thermal imager development
Summary
Summary
An uncooled thermal imager is being developed based on a liquid crystal (LC) transducer. Without any electrical connections, the LC transducer pixels change the long-wavelength infrared (LWIR) scene directly into a visible image as opposed to an electric signal in microbolometers. The objectives are to develop an imager technology scalable...