Publications

Refine Results

(Filters Applied) Clear All

State of the art focal plane arrays of InP/InGaAsP Geiger-mode avalanche photodiodes for active electro-optical applications

Summary

MIT Lincoln Laboratory has developed InP/InGaAsP Geiger-Mode Avalanche Photodiodes and associated readout integrated circuits (ROICs) that have enabled numerous active optical systems over the past decade. Framed and asynchronous photon timing ROIC architectures have been demonstrated. In recent years, efforts at MITLL have focused on technology development to advance the state of the art of framed Gm APD FPAs and a 256x128 pixel FPA with on-chip data thinning has been demonstrated.
READ LESS

Summary

MIT Lincoln Laboratory has developed InP/InGaAsP Geiger-Mode Avalanche Photodiodes and associated readout integrated circuits (ROICs) that have enabled numerous active optical systems over the past decade. Framed and asynchronous photon timing ROIC architectures have been demonstrated. In recent years, efforts at MITLL have focused on technology development to advance the...

READ MORE

Crosstalk characterization and mitigation in Geiger-mode avalanche photodiode arrays

Summary

Intra focal plane array (FPA) crosstalk is a primary development limiter of large, fine-pixel Geiger-mode avalanche photodiode (Gm-APD) arrays beyond 256×256 pixels. General analysis methods and results from MIT Lincoln Laboratory (MIT/LL) InP-based detector arrays will be presented.
READ LESS

Summary

Intra focal plane array (FPA) crosstalk is a primary development limiter of large, fine-pixel Geiger-mode avalanche photodiode (Gm-APD) arrays beyond 256×256 pixels. General analysis methods and results from MIT Lincoln Laboratory (MIT/LL) InP-based detector arrays will be presented.

READ MORE

Readout circuitry for continuous high-rate photon detection with arrays of InP Geiger-mode avalanche photodiodes

Summary

An asynchronous readout integrated circuit (ROIC) has been developed for hybridization to a 32x32 array of single-photon sensitive avalanche photodiodes (APDs). The asynchronous ROIC is capable of simultaneous detection and readout of photon times of arrival, with no array blind time. Each pixel in the array is independently operated by a finite state machine that actively quenches an APD upon a photon detection event, and re-biases the device into Geiger mode after a programmable hold-off time. While an individual APD is in hold-off mode, other elements in the array are biased and available to detect photons. This approach enables high pixel refresh frequency (PRF), making the device suitable for applications including optical communications and frequency-agile ladar. A built-in electronic shutter that de-biases the whole array allows the detector to operate in a gated mode or allows for detection to be temporarily disabled. On-chip data reduction reduces the high bandwidth requirements of simultaneous detection and readout. Additional features include programmable single-pixel disable, region of interest processing, and programmable output data rates. State-based on-chip clock gating reduces overall power draw. ROIC operation has been demonstrated with hybridized InP APDs sensitive to 1.06-Mm and 1.55-Mm wavelength, and fully packaged focal plane arrays (FPAs) have been assembled and characterized.
READ LESS

Summary

An asynchronous readout integrated circuit (ROIC) has been developed for hybridization to a 32x32 array of single-photon sensitive avalanche photodiodes (APDs). The asynchronous ROIC is capable of simultaneous detection and readout of photon times of arrival, with no array blind time. Each pixel in the array is independently operated by...

READ MORE

Showing Results

1-3 of 3