Publications
Liquid crystal uncooled thermal imager development
Summary
Summary
An uncooled thermal imager is being developed based on a liquid crystal (LC) transducer. Without any electrical connections, the LC transducer pixels change the long-wavelength infrared (LWIR) scene directly into a visible image as opposed to an electric signal in microbolometers. The objectives are to develop an imager technology scalable...
A scalable fabrication process for liquid crystal-based uncooled thermal imagers
Summary
Summary
A novel sensor is being developed for a new uncooled imager technology that is scalable to large formats (tens of megapixels), which is greater than what is achieved by commercial microbolometer arrays. In this novel sensor, a liquid-crystal transducer is used to change a long-wavelength infrared scene into a visible...
Versatile alignment layer method for new types of liquid crystal photonic devices
Summary
Summary
Liquid crystal photonic devices are becoming increasingly popular. These devices often present a challenge when it comes to creating a robust alignment layer in pre-assembled cells. In this paper, we describe a method of infusing a dye into a microcavity to produce an effective photo-definable alignment layer. However, previous research...
Materials and fabrication sequences for water soluble silicon integrated circuits at the 90 nm node
Summary
Summary
Tungsten interconnects in silicon integrated circuits built at the 90 nm node with releasable configurations on silicon on insulator wafers serve as the basis for advanced forms of water-soluble electronics. These physically transient systems have potential uses in applications that range from temporary biomedical implants to zero-waste environmental sensors. Systemic...
Liquid crystal uncooled thermal imager development
Summary
Summary
An uncooled thermal imager is being developed based on a liquid crystal transducer. The liquid crystal transducer changes a long-wavelength infrared scene into a visible image as opposed to an electric signal in microbolometers. This approach has the potential for making a more flexible thermal sensor. One objective is to...
MEMS microswitches for reconfigurable microwave circuitry
Summary
Summary
The performance is reported for a new microelectromechanical structure (MEMS) cantilever microswitch. We report on both dc- and capacitively-contacted microswitches. The dc-contacted microswitches have contact resistance of less than 1 ohm, and the RF loss of the switch up to 40 GHz in the closed position is 0.1-0.2 dB. Capacitively-contacted...
MEMs microswitch arrays for reconfigurable distributed microwave components
Summary
Summary
A revolutionary device technology and circuit concept is introduced for a new class of reconfigurable microwave circuits and antennas. The underlying mechanism is a compact MEMs cantilever microswitch that is arrayed in two-dimensions. The switches have the ability to be individually actuated. By constructing distributed circuit components from an array...