Publications

Refine Results

(Filters Applied) Clear All

Germanium CCDs for large-format SWIR and x-ray imaging

Summary

Germanium exhibits high sensitivity to short-wave infrared (SWIR) and X-ray radiation, making it an interesting candidate for imaging applications in these bands. Recent advances in germanium processing allow for high-quality charge-coupled devices (CCDs) to be realized in this material. In this article, we discuss our evaluation of germanium as an absorber material for CCDs via fabrication and analysis of discrete devices such as diodes, metal-insulator-semiconductor capacitors, and buried-channel metal-oxide-semiconductor field-effect transistors (MOSFETs). We then describe fabrication of our first imaging device on germanium, a 32 x 1 x 8.1 um linear shift register. Based on this work, we find that germanium is a promising material for CCDs imaging in the SWIR and X-ray bands.
READ LESS

Summary

Germanium exhibits high sensitivity to short-wave infrared (SWIR) and X-ray radiation, making it an interesting candidate for imaging applications in these bands. Recent advances in germanium processing allow for high-quality charge-coupled devices (CCDs) to be realized in this material. In this article, we discuss our evaluation of germanium as an...

READ MORE

Wafer-scale aluminum nanoplasmonic resonators with optimized metal deposition

Published in:
ACS Photonics, Vol. 3, No. 5, 18 May 2016, pp. 796-805.

Summary

Spectroscopic ellipsometry is demonstrated to be an effective technique for assessing the quality of plasmonic resonances within aluminum nanostructures deposited with multiple techniques. The resonance quality of nanoplasmonic aluminum arrays is shown to be strongly dependent on the method of aluminum deposition. Three-layer metal-dielectric-metal nanopillar arrays were fabricated in a complementary metal-oxide semiconductor (CMOS) facility, with the arrays of nanopillars separated from a continuous metal underlayer by a thin dielectric spacer, to provide optimum field enhancement. Nanostructures patterned in optimized aluminum, which had been deposited with a high temperature sputtering process followed by chemical mechanical planarization, display different resonance and depolarization behavior than nanostructures deposited by the more conventional evaporation process. Full plasmonic band diagrams are mapped over a wide range of incidence angles and wavelengths using spectroscopic ellipsometry, and compared for aluminum nanostructures fabricated with two methods. The resonators fabricated from optimized aluminum exhibit a narrower bandwidth of both plasmonic resonance and depolarization parameters, indicating a higher quality resonance due to a stronger localization of the electric field. The optimized wafer-scale aluminum plasmonics fabrication should provide a pathway towards better quality devices for sensing and light detection in the ultraviolet and blue parts of the spectrum.
READ LESS

Summary

Spectroscopic ellipsometry is demonstrated to be an effective technique for assessing the quality of plasmonic resonances within aluminum nanostructures deposited with multiple techniques. The resonance quality of nanoplasmonic aluminum arrays is shown to be strongly dependent on the method of aluminum deposition. Three-layer metal-dielectric-metal nanopillar arrays were fabricated in a...

READ MORE

Showing Results

1-2 of 2