Publications
Immersion patterning down to 27 nm half pitch
Summary
Summary
Liquid immersion interference lithography at 157 nm has been used to print gratings of 27 nm half pitch with a fluorine-doped fused silica prism having index of 1.66. In order to achieve these dimensions, new immersion fluids have been designed and synthesized. These are partially fluorinated organosiloxanes with indexes up...
Nanocomposite approaches toward pellicles for 157-nm lithography
Summary
Summary
Pellicle materials for use at 157 nm must display sufficient transparency at this wavelength and adequate lifetimes to be useful. We blended a leading candidate fluoropolymer with silica nanoparticles to examine the effect on both the transparency and lifetime of the pellicle. It is anticipated that these composite materials may...
A high-power MEMS electric induction motor
Summary
Summary
An electric induction micromotor with a 4-mm-diameter rotor was designed and built for high-power operation. Operated at partial actuating voltage, the motor has demonstrated an air gap power in excess of 20 mWand torque of 3 5 Nmat speeds in excess of 55 000 rpm. Operation at higher power and...
Photoresist outgassing: a potential Achilles heel for short wavelength optical lithography?
Summary
Summary
The outgassing of volatile organic compounds during photoresist exposure at short wavelengths (
Marathon evaluation of optical materials for 157-nm lithography
Summary
Summary
We present the methodology and recent results on the longterm evaluation of optical materials for 157-nm lithographic applications. We review the unique metrology capabilities that have been developed for accurately assessing optical properties of samples both online and offline, utilizing VUV spectrophotometry with in situlamp-based cleaning. We describe ultraclean marathon...
Investigation of the physical and practical limits of dense-only phase shift lithography for circuit feature definition
Summary
Summary
The rise of low- k1 optical lithography in integrated circuit manufacturing has introduced new questions concerning the physical and practical limits of particular subwavelength resolution-enhanced imaging approaches. For a given application, trade-offs between mask complexity, design cycle time, process latitude and process throughput must be well understood. It has recently...
Infrared frequency selective surfaces fabricated using optical lithography and phase-shift masks
Summary
Summary
A frequency selective surface (FSS) structure has been fabricated for use in a thermophotovoltaic system. The FSS provides a means for reflecting the unusable light below the band gap of the thermophotovoltaic cell while transmitting the usable light above the band gap. This behavior is relatively independent of the light's...
Monolithic 3.3V CCD/SOI-CMOS Imager Technology
Summary
Summary
We have developed a merged CCD/SOI-CMOS technology that enables the fabrication of monolithic, low-power imaging systems on a chip. The CCD's, fabricated in the bulk handle wafer, have charge-transfer inefficiencies of about 1x10(-5) and well capacities of more than 100,000 electrons with 3.3-V clocks and 8x8um pixels. Fully depleted 0.35pm...
Dynamic suppression of interface-state dark current in buried-channel CCDs
Summary
Summary
It is shown that the time dependence of the carrier generation rate at a depleted surface can be exploited to completely suppress interface-state dark current in buried-channel charge-coupled devices (CCDs). When a surface is switched from an inverted to a depleted state, the generation current recovers with a time constant...