Publications

Refine Results

(Filters Applied) Clear All

Nanochannel fabrication based on double patterning with hydrogen silsesquioxane

Published in:
J. Vac. Sci. Technol. B, Microelectron. Process. Phenon., Vol. 33, No. 2, March 2015, 020601.

Summary

A double patterning process is presented to pattern sub-35 nm wide channels in hydrogen silsesquioxane with near 100% pattern densities. Using aligned electron beam lithography, each side of the nanochannel structure is patterned as a separate layer. A 50000 uC/cm^2 high-dose anneal is applied to the first layer after exposure. Channels with widths below ~60 nm are shown to exhibit footing with standard tetramethyl ammonium hydroxide developers. This problem is resolved by adding surfectant during the development of the final channel structure. The resulting process produced channels
READ LESS

Summary

A double patterning process is presented to pattern sub-35 nm wide channels in hydrogen silsesquioxane with near 100% pattern densities. Using aligned electron beam lithography, each side of the nanochannel structure is patterned as a separate layer. A 50000 uC/cm^2 high-dose anneal is applied to the first layer after exposure...

READ MORE

Lithographically directed surface modification

Published in:
J. Vacuum Sci. Technol. B, Microelectron. Process. Phenon., Vol. 27, No. 6, p. 3031-3037.

Summary

The directed assembly of polystyrene-block-poly(methyl methacrylate) films on a variety of photolytically nanopatterned siloxane-modified surfaces was investigated. The amount of siloxane removal is related to the exposure dose of a 157 nm laser. The modified surfaces were imaged using a 157 nm interference exposure system to lithographically define areas of different surface energies to direct the assembly of the diblock copolymer films. The analysis of the surface energy aerial image provided insights into the exposure doses required to result in defect-free films. While the slope of the surface energy aerial image was not found to be important by itself, in concert with the difference in high and low surface energy regions, as well as the maximum value of the low surface energy region, it provided insight into conditions needed to direct self-assembly of the block copolymer films. Preliminary investigations concerning the extension of this methodology to 193 nm showed that the polar surface energy of arylsiloxane-modified surfaces can also be affected by 193 nm exposure.
READ LESS

Summary

The directed assembly of polystyrene-block-poly(methyl methacrylate) films on a variety of photolytically nanopatterned siloxane-modified surfaces was investigated. The amount of siloxane removal is related to the exposure dose of a 157 nm laser. The modified surfaces were imaged using a 157 nm interference exposure system to lithographically define areas of...

READ MORE

Polymer matrix effects on acid generation

Published in:
SPIE Vol. 6923, Advances in Resist Materials and Processing Technology XXV, 24-29 February 2008, 692319.

Summary

We have measured the acid generation efficiency with EUV exposure of a PAG in different polymer matrixes representing the main classes of resist polymers as well as some previously described fluoropolymers for lithographic applications. The polymer matrix was found to have a significant effect on the acid generation efficiency of the PAG studied. A linear relationship exists between the absorbance of the resist and the acid generation efficiency. A second inverse relationship exists between Dill C and aromatic content of the resist polymer. It was shown that polymer sensitization is important for acid generation with EUV exposure and the Dill C parameter can be increased by up to five times with highly absorbing non-aromatic polymers, such as non-aromatic fluoropolymers, over an ESCAP polymer. The increase in the Dill C value will lead to an up to five fold increase in resist sensitivity. It is our expectation that these insights into the nature of polymer matrix effects on acid generation could lead to increased sensitivity for EUV resists.
READ LESS

Summary

We have measured the acid generation efficiency with EUV exposure of a PAG in different polymer matrixes representing the main classes of resist polymers as well as some previously described fluoropolymers for lithographic applications. The polymer matrix was found to have a significant effect on the acid generation efficiency of...

READ MORE

Nanocomposite approaches toward pellicles for 157-nm lithography

Published in:
J. Microlith., Microfab., Microsyst., Vol. 4, No. 1, January-March 2005, pp. 013004-1 - 013004-6.

Summary

Pellicle materials for use at 157 nm must display sufficient transparency at this wavelength and adequate lifetimes to be useful. We blended a leading candidate fluoropolymer with silica nanoparticles to examine the effect on both the transparency and lifetime of the pellicle. It is anticipated that these composite materials may increase the lifetime by perhaps quenching reactive species and/or by dilution, without severely decreasing the 157-nm transmission. Particles surface-modified with fluorinated moieties are also investigated. The additives are introduced as stable nanoparticle dispersions to casting solutions of the fluoropolymers. The properties of these solutions, films, and the radiationinduced darkening rates are reported. The latter are reduced in proportion to the dilution of the polymer, but there is no evidence that the nanoparticles act as radical scavengers.
READ LESS

Summary

Pellicle materials for use at 157 nm must display sufficient transparency at this wavelength and adequate lifetimes to be useful. We blended a leading candidate fluoropolymer with silica nanoparticles to examine the effect on both the transparency and lifetime of the pellicle. It is anticipated that these composite materials may...

READ MORE

Showing Results

1-4 of 4