Publications

Refine Results

(Filters Applied) Clear All

SET characterization in logic circuits fabricated in a 3DIC technology

Summary

Single event transients are characterized for the first time in logic gate circuits fabricated in a novel 3DIC technology where SET test circuits are vertically integrated on three tiers in a 20-um-thick layer. This 3D technology is extremely will suited for high-density circuit integration because of the small dimension the tier-to-tier circuit interconnects, which are 1.25-um-wide-through-oxide-vias. Transient pulse width distributions were characterized simultaneously on each tier during exposure to krypton heavy ions. The difference in SET pulse width and cross-section among the three tiers is discussed. Experimental test results are explaine dby considering the electrical characteristics of the FETs on the 2D wafers before 3D integration, and by considering the energy deposited by the Kr ions passing through the various material laters of the 3DIC stack. We also show that the backmetal layer available on the upper tiers can be used to tune independently the nFET and pFET current drive, and change the SET pulse width and cross-section. This 3DIC technology appears to be a good candidate for space applications.
READ LESS

Summary

Single event transients are characterized for the first time in logic gate circuits fabricated in a novel 3DIC technology where SET test circuits are vertically integrated on three tiers in a 20-um-thick layer. This 3D technology is extremely will suited for high-density circuit integration because of the small dimension the...

READ MORE

Effects of ionizing radiation on digital single event transients in a 180-nm fully depleted SOI process

Published in:
2009 IEEE Nuclear & Space Radiation Effects Conf., 07/20/2009 [in: IEEE Trans. Nuclear Sci., Vol. 56, No. 9, December 2009, pp. 3477-3482].

Summary

Effects of ionizing radiation on single event transients are reported for Fully Depleted SOI (FDSOI) technology using experiments and simulations. Logic circuits, i.e. CMOS inverter chains, were irradiated with cobalt-60 gamma radiation. When charge is induced in the n-channel FET with laser-probing techniques, laser-induced transients widen with increased total dose. This is because radiation causes charge to be trapped in the buried oxide, and reduces the p-channel FET drive current. When the p-channel FET drive current is reduced, the time required to restore the output of the laser-probed FET back to its original condition is increased, i.e. the upset transient width is increased. A widening of the transient pulse is also observed when a positive bias is applied to the wafer without any exposure to radiation. This is because a positive wafer bias reproduces the shifts inFET threshold voltages that occur during total dose irradiation. Results were also verified with heavy ion testing and mixed mode simulations.
READ LESS

Summary

Effects of ionizing radiation on single event transients are reported for Fully Depleted SOI (FDSOI) technology using experiments and simulations. Logic circuits, i.e. CMOS inverter chains, were irradiated with cobalt-60 gamma radiation. When charge is induced in the n-channel FET with laser-probing techniques, laser-induced transients widen with increased total dose...

READ MORE

Showing Results

1-2 of 2