Publications

Refine Results

(Filters Applied) Clear All

Simultaneous dynamic pupil coding with on-chip coded aperture temporal imaging

Published in:
SRS 2014: Signal Recovery and Synthesis Conf., 13-17 June 2014.

Summary

We describe a new sensor that combines dynamic pupil coding with a digital readout integrated circuit (DROIC) capable of modulating a scene with a global or per-pixel time-varying, pseudo-random, and duo-binary signal (+1-1,0).
READ LESS

Summary

We describe a new sensor that combines dynamic pupil coding with a digital readout integrated circuit (DROIC) capable of modulating a scene with a global or per-pixel time-varying, pseudo-random, and duo-binary signal (+1-1,0).

READ MORE

Digital pixel CMOS focal plane array with on-chip multiply accumulate units for low-latency image processing

Published in:
SPIE, Vol. 9070, Infrared Technology and Applications XL, 5 May 2014, 90703B.

Summary

A digital pixel CMOS focal plane array has been developed to enable low latency implementations of image processing systems such as centroid trackers, Shack-Hartman wavefront sensors, and Fitts correlation trackers through the use of in-pixel digital signal processing (DSP) and generic parallel pipelined multiply accumulate (MAC) units. Light intensity digitization occurs at the pixel level, enabling in-pixel DSP and noiseless data transfer from the pixel array to the peripheral processing units. The pipelined processing of row and column image data prior to off chip readout reduces the required output bandwidth of the image sensor, thus reducing the latency of computations necessary to implement various image processing systems. Data volume reductions of over 80% lead to sub 10us latency for completing various tracking and sensor algorithms. This paper details the architecture of the pixel-processing imager (PPI) and presents some initial results from a prototype device fabricated in a standard 65nm CMOS process hybridized to a commercial off-the-shelf short-wave infrared (SWIR) detector array.
READ LESS

Summary

A digital pixel CMOS focal plane array has been developed to enable low latency implementations of image processing systems such as centroid trackers, Shack-Hartman wavefront sensors, and Fitts correlation trackers through the use of in-pixel digital signal processing (DSP) and generic parallel pipelined multiply accumulate (MAC) units. Light intensity digitization...

READ MORE

Impact ionization in AlxGa1-xASySb1-y avalanche photodiodes

Summary

Avalanche photodiodes (APDs) have been fabricated in order to determine the impact ionization coefficients of electrons (alpha) and holes (beta) in AlxGa1-xAsySb1-y lattice matched to GaSb for three alloy compositions: (x=0.40, y=0.035), (x=0.55, y=0.045), and (x=0.65, y=0.054). The impact ionization coefficients were calculated from photomultiplication measurements made on specially designed APDs, which allowed for both pure electron and pure hole injection in the same device. Photo-multiplication measurements were made at temperatures ranging from 77K to 300K for all three alloys. A quasi-physical model with an explicit temperature dependence was used to express the impact ionization coefficients as a function of electric-field strength and temperature. For all three alloys, it was found that alpha < beta at any given temperature. In addition, the values of the impact ionization coefficients were found to decrease as the aluminum concentration of the AlGaAsSb alloy was increased. A value between 1.2 and 4.0 was found for beta/x, which is dependent on temperature, alloy composition, and electric-field strength.
READ LESS

Summary

Avalanche photodiodes (APDs) have been fabricated in order to determine the impact ionization coefficients of electrons (alpha) and holes (beta) in AlxGa1-xAsySb1-y lattice matched to GaSb for three alloy compositions: (x=0.40, y=0.035), (x=0.55, y=0.045), and (x=0.65, y=0.054). The impact ionization coefficients were calculated from photomultiplication measurements made on specially designed...

READ MORE

Gigahertz (GHz) hard X-ray imaging using fast scintillators

Summary

Gigahertz (GHz) imaging technology will be needed at high-luminosity X-ray and charged particle sources. It is plausible to combine fast scintillators with the latest picosecond detectors and GHz electronics for multi-frame hard X-ray imaging and achieve an inter-frame time of elss than 10 ns. The time responses and light yield of LYSO, LaBr3, BaF2 and ZnO are measured using an MCP-PMT detector. Zinc Oxide (ZnO) is an attractive material for fast hard X-ray imaging based on GEANT4 simulations and previous studies, but the measured light yield from the samples is much lower than expected.
READ LESS

Summary

Gigahertz (GHz) imaging technology will be needed at high-luminosity X-ray and charged particle sources. It is plausible to combine fast scintillators with the latest picosecond detectors and GHz electronics for multi-frame hard X-ray imaging and achieve an inter-frame time of elss than 10 ns. The time responses and light yield...

READ MORE

Pixel-processing imager development for directed energy applications

Summary

Tactical high-energy laser (HEL) systems face a range of imaging-related challenges in wavefront sensing, acquiring and tracking targets, selecting the HEL aimpoint, and assessing lethality. Accomplishing these functions in a timely fashion may be limited by competing requirements on total field of regard, target resolution, signal to noise, and focal plane readout bandwidth. In this paper, we explore the applicability of an emerging pixel-processing imager (PPI) technology to these challenges. The on-focal-plane signal processing capabilities of the MIT Lincoln Laboratory PPI technology have recently been extended in support of directed energy applications. We describe this work as well as early results from a new PPI-based short-wave-infrared focal plane readout capable of supporting diverse applications such as low-latency Shack-Hartmann wavefront sensing, centroid computation, and Fitts correlation tracking.
READ LESS

Summary

Tactical high-energy laser (HEL) systems face a range of imaging-related challenges in wavefront sensing, acquiring and tracking targets, selecting the HEL aimpoint, and assessing lethality. Accomplishing these functions in a timely fashion may be limited by competing requirements on total field of regard, target resolution, signal to noise, and focal...

READ MORE

Single event transients in digital CMOS - a review

Published in:
IEEE Trans. Nucl. Sci., Vol. 60, No. 3, June 2013, pp. 1767-90.

Summary

The creation of soft errors due to the propagation of single event transients (SETs) is a significant reliability challenge in modern CMOS logic. SET concerns continue to be exacerbated by Moore's Law technology scaling. This paper presents a review of digital single event transient research, including: a brief historical overview of the emergence of SET phenomena, a review of the present understanding of SET mechanisms, a review of the state-of-the-art in SET testing and modelling, a discussion of mitigation techniques, and a discussion of the impact of technology scaling trends on future SET significance.
READ LESS

Summary

The creation of soft errors due to the propagation of single event transients (SETs) is a significant reliability challenge in modern CMOS logic. SET concerns continue to be exacerbated by Moore's Law technology scaling. This paper presents a review of digital single event transient research, including: a brief historical overview...

READ MORE

Gadolinium oxide coated fully depleted silicon-on-insulator transistors for thermal neutron dosimetry

Published in:
Nucl. Instrum. Methods Phys. Res. A, Accel., Vol. 721, 2013, pp. 45-9.

Summary

Fully depleted silicon-on-insulator transistors coated with gadolinium oxide are shown to be effective thermal neutron dosimeters. The theoretical neutron detection efficiency is calculated to be higher for Gd2O3 than for other practical converter materials. Proof-of-concept dosimeter devices were fabricated and tested during thermal neutron irradiation. The transistor current changes linearly with neutron dose, consistent with increasing positive charge in the SOI buried oxide layer generated by ionization from high energy 157Gd(n,γ)158Gd conversion electrons. The measured neutron sensitivity is approximately 1/6 the maximum theoretical value, possibly due to electron-hole recombination or conversion electron loss in interconnect wiring above the transistors.
READ LESS

Summary

Fully depleted silicon-on-insulator transistors coated with gadolinium oxide are shown to be effective thermal neutron dosimeters. The theoretical neutron detection efficiency is calculated to be higher for Gd2O3 than for other practical converter materials. Proof-of-concept dosimeter devices were fabricated and tested during thermal neutron irradiation. The transistor current changes linearly...

READ MORE

Etching selectivity of indium tin oxide to photoresist in high density chlorine- and ethylene-containing plasmas

Author:
Published in:
J. Vac. Sci. Technol. B, Microelectron. and Nanometer Structures, Vol. 31, No. 2, 13 March 2013, 021210.

Summary

Etching of indium tin oxide (ITO) thin films in high density chlorine plasmas is studied, with the goal of increasing the etching selectivity to photoresist. The ITO etching rate increases with ethylene addition, but is not affected by BCl3 addition. ITO exhibits a threshold energy for ion etching, whereas the photoresist etches spontaneously in chlorine plasmas. The ITO:photoresist selectivity increases with BCl3 addition, ion bombardment energy, and C2H4 addition. It is proposed that the ITO etching rate is limited by desorption of InClx products, and that ethylene addition assists in scavenging oxygen from ITO leaving loosely bound In, which is more easily removed by physical sputtering.
READ LESS

Summary

Etching of indium tin oxide (ITO) thin films in high density chlorine plasmas is studied, with the goal of increasing the etching selectivity to photoresist. The ITO etching rate increases with ethylene addition, but is not affected by BCl3 addition. ITO exhibits a threshold energy for ion etching, whereas the...

READ MORE

Waveguide engineering for hybrid Si/III-V lasers and amplifiers

Published in:
CLEO: Conf. on Lasers and Electro-Optics, 6-11 June 2012.

Summary

Using adiabatic tapers, hybrid silicon / III-V lasers and amplifiers are integrated with conventional thin (t = 0.25 um) silicon waveguides. Amplifiers have ~12 dB intrachip gain, and similar lasers have thresholds of 35 mA.
READ LESS

Summary

Using adiabatic tapers, hybrid silicon / III-V lasers and amplifiers are integrated with conventional thin (t = 0.25 um) silicon waveguides. Amplifiers have ~12 dB intrachip gain, and similar lasers have thresholds of 35 mA.

READ MORE

A photon-counting detector for exoplanet missions

Published in:
SPIE Vol. 8151, Techniques and Instrumentation for Detection of Exoplanets V, 5 September 2011, 81510K.

Summary

This paper summarizes progress of a project to develop and advance the maturity of photon-counting detectors for NASA exoplanet missions. The project, funded by NASA ROSES TDEM program, uses a 256x256 pixel silicon Geiger-mode avalanche photodiode (GM-APD) array, bump-bonded to a silicon readout circuit. Each pixel independently registers the arrival of a photon and can be reset and ready for another photon within 100 ns. The pixel has built-in circuitry for counting photo-generated events. The readout circuit is multiplexed to read out the photon arrival events. The signal chain is inherently digital, allowing for noiseless transmission over long distances. The detector always operates in photon counting mode and is thus not susceptible to excess noise factor that afflicts other technologies. The architecture should be able to operate with shot-noise-limited performance up to extremely high flux levels, >106 photons/second/pixel, and deliver maximum signal-to-noise ratios on the order of thousands for higher fluxes. Its performance is expected to be maintained at a high level throughout mission lifetime in the presence of the expected radiation dose.
READ LESS

Summary

This paper summarizes progress of a project to develop and advance the maturity of photon-counting detectors for NASA exoplanet missions. The project, funded by NASA ROSES TDEM program, uses a 256x256 pixel silicon Geiger-mode avalanche photodiode (GM-APD) array, bump-bonded to a silicon readout circuit. Each pixel independently registers the arrival...

READ MORE