Publications
Combining-efficiency X-band spatial power-combined array using a multilayered packaging architecture
Summary
Summary
The design of a high combining-efficiency spatial power-combined array is described in this paper. A multilayered stacked stripline architecture enables a compact stable design. An array incorporating antenna active impedance and proper amplifier matching is measured with a combining efficiency of 87%, radiating 6.8 W of an available 7.8 W...
MEMs microswitch arrays for reconfigurable distributed microwave components
Summary
Summary
A revolutionary device technology and circuit concept is introduced for a new class of reconfigurable microwave circuits and antennas. The underlying mechanism is a compact MEMs cantilever microswitch that is arrayed in two-dimensions. The switches have the ability to be individually actuated. By constructing distributed circuit components from an array...
An enhanced bandwidth design technique for electromagnetically coupled microstrip antennas
Summary
Summary
This paper describes a method of enhancing the bandwidth of two different electromagnetically coupled microstrip antennas by utilization of a tuning stub. An approximate theory and equations are developed to demonstrate the potential bandwidth improvement and required stub impedance characteristics. A novel dual-stub design is presented that achieves better characteristics...
Demonstration of a 630-GHz photomixer used as a local oscillator
Summary
Summary
We report the first successful demonstration of a photomixer local oscillator (LO) integrated with a superconducting heterodyne detector. The photomixer LO generated the difference frequency of two diode lasers by optical heterodyne conversion in low-temperature-grown GaAs. The measured receiver noise temperature, 331 K at 630 GHz, compares favorably with that...
A dual-band circularly polarized aperture-coupled stacked microstrip antenna for global positioning satellite
Summary
Summary
This paper describes the design and testing of an aperture-coupled circularly polarized antenna for global positioning satellite (GPS) applications. The antenna operates at both the L1 and L2 frequencies of 1575 and 1227 MHz, which is required for differential GPS systems in order to provide maximum positioning accuracy. Electrical performance...
A multilayered packaging architecture for spatial power combined arrays
Summary
Summary
The explosion of interest in high data rate communications places great demands on current antenna designs. Antennas used for transmitting signals can require high gain with high radiated power. An efficient means to accomplish these goals is the free space combining of many amplifiers via elements in an antenna array...
A modified transmission line model for cavity backed microstrip antennas
Summary
Summary
Spatial power combining of many MMIC amplifiers at millimeter wave frequencies using a fixed array of microstrip antenna elements places unique demands on dielectric media. The substrate must be relatively thick to allow space for MMIC placement, must provide rather high thermal conductivity to disipate MMIC heat, and be of...
45-GHz MMIC power combining using a circuit-fed, spatially combined array
Summary
Summary
We describe the design and measurement of a hybrid-circuit, tile-approach subarray for use in spatial power-combined transmitters. The subarray consists of 16 monolithic millimeter-wave integrated circuit (MMIC) amplifiers, each feeding a circularly polarized cavity-backed microstrip antenna. The average performance across the 43.5-45.5 GHz band is as follows: EIRP 18.3 dBW...
A 16-element subarray for hybrid-circuit tile-approach spatial power combining
Summary
Summary
Three designs for a 4-by-4 are described for use in a spatial power-combined transmitter. The subarrays are constructed using a hybrid-circuit, tile-approach architecture and are composed of 16 cavity-backed, proximity-coupled microstrip antennas, each fed by a 0.5 watt amplifier. Both linearly and circularly polarized subarrays have been constructed for operation...
Experimental comparison of the radiation efficiency for conventional and cavity backed microstrip antennas
Summary
Summary
The radiation efficiency of conventional microstrip antennas generally decreases when the substrate thickness or permittivity is increased because of loss to surface waves. However, constructing a metal cavity around the microstrip antenna prevents the surface wave propagation. Thus, the cavity backed microstrip antenna has been predicted to have increased radiation...