Publications

Refine Results

(Filters Applied) Clear All

Dallas/Fort Worth field demonstration #2 (DFW-2) final report for Tower Flight Data Manager (TFDM)

Summary

The Tower Flight Data Manager (TFDM) is the next generation air traffic control tower (ATCT) information system that integrates surveillance, flight data, and other sources, which enables advanced decision support tools (DSTs) to improve departure and arrival efficiency and reduce fuel burn at the airport. TFDM was exercised as a prototype installed at the Dallas / Fort Worth International Airport (DFW) during a two-week demonstration in the spring of 2011 termed DFW-2. MIT Lincoln Laboratory conducted this demonstration for the FAA in coordination with DFW air traffic control (ATC) and the DFW airport authority. The objective of this TFDM field demonstration was to validate the operational suitability and refine production system requirements of the Tower Information Display System (TIDS) surface surveillance display and Flight Data Manager (FDM) electronic flight data display and to evaluate the first iteration of the Supervisor Display and DSTs. These objectives were met during the two-week field demonstration. Results indicated that the TIDS and FDM exhibited capabilities considered operationally suitable for the tower as an advisory system and as a primary means for control given surface surveillance that is approved for operational use. Human factors data indicated that TIDS and FDM could be beneficial. The prototype Supervisor Display and DSTs met a majority of the technical performance criteria, but fewer than half of the human factors success criteria were met. As this was the first iteration of the Supervisor Display and DST capabilities, subsequent prototype iterations to achieve the target concept of operations, functionality and information presentation with accompanying field demonstrations to evaluate these honed capabilities were recommended and expected. FLM/TMC feedback will help refine subsequent system design.
READ LESS

Summary

The Tower Flight Data Manager (TFDM) is the next generation air traffic control tower (ATCT) information system that integrates surveillance, flight data, and other sources, which enables advanced decision support tools (DSTs) to improve departure and arrival efficiency and reduce fuel burn at the airport. TFDM was exercised as a...

READ MORE

U.S. Department of Transportation Federal Aviation Administration Field Demonstration #2: Final Report for Staffed NextGen Tower (SNT)

Published in:
MIT Lincoln Laboratory Report ATC-389

Summary

Staffed NextGen Towers (SNT), a research concept being developed and validated by the Federal Aviation Administration (FAA), is a paradigm shift to providing air traffic control services primarily via surface surveillance approved for operational use by controllers instead of the existing out-the-window (OTW) view at high-density airports. SNT was exercised as a prototype installed at the Dallas-Fortworth International Airport (DFW) during a two-week demonstration in the spring of 2011. MIT Lincoln Laboratory conducted this demonstration for the FAA in coordination with DFW air traffic control (ATC) and the DFW airport authority. This proof-of-concept demonstration used live traffic and was conducted by shadowing East tower operations from the DFW center tower, which is a back-up facility currently not typically used for air traffic control. The objective of this SNT field demonstration was to validate the supplemental SNT concept, to assess the operational suitability of the Tower Information Display System (TIDS) display for surface surveillance, and to evaluate the first iteration of prototype cameras in providing visual augmentation. TIDS provided surface surveillance information using an updated user interface that was integrated with electronic flight data. The cameras provided both fixed and scanning views of traffic to augment the OTW view. These objectives were met during the two-week field demonstration. DFW air traffic provided twelve controllers, three front line manager (FLMs), and three traffic management coordinators (TMCs) as test subjects. The twelve National Air Traffic Controllers Association (NATCA) DFW controllers "worked" the traffic according to their own techniques, using new hardware and software that included high resolution displays of surveillance data augmented by camera views. This equipment was designed to provide enhanced situational awareness to allow controllers to manage increased traffic volume during poor visibility conditions, leading to increased throughput. Results indicated that the likelihood of user acceptance and operational suitability is high for TIDS as a primary means for control, given surface surveillance that is approved for operational use. Human factors data indicated that TIDS could be beneficial. However, major technical issues included two display freezes, some incorrectly depicted targets, and display inconsistencies on TIDS. The cameras experienced numerous technical limitations that negatively influenced the human factors assessment of them. This report includes the percentages of human factors and technical success criteria that passed at DFW-2.
READ LESS

Summary

Staffed NextGen Towers (SNT), a research concept being developed and validated by the Federal Aviation Administration (FAA), is a paradigm shift to providing air traffic control services primarily via surface surveillance approved for operational use by controllers instead of the existing out-the-window (OTW) view at high-density airports. SNT was exercised...

READ MORE

A field demonstration of the air traffic control Tower Flight Data Manager prototype

Published in:
HFES 2011, Human Factors and Ergonomics Society 55th Annual Mtg., 19-23 September 2011, p. 61-65.

Summary

The development and evaluation process of the Tower Flight Data Manager prototype at Dallas Ft. Worth airport is described. Key results from the first field evaluation are presented, including lessons learned about making electronic flight information acceptable to controllers. Iteration of the field evaluation methods are discussed for practitioner benefit.
READ LESS

Summary

The development and evaluation process of the Tower Flight Data Manager prototype at Dallas Ft. Worth airport is described. Key results from the first field evaluation are presented, including lessons learned about making electronic flight information acceptable to controllers. Iteration of the field evaluation methods are discussed for practitioner benefit.

READ MORE

Operational evaluation of runway status lights

Published in:
Lincoln Laboratory Journal, Vol. 16, No. 1, June 2006, pp. 123-146.

Summary

To maintain safe separation of aircraft on the airport surface, air traffic controllers issue verbal clearances to pilots to sequence aircraft arrivals, departures, and runway crossings. Although controllers and pilots work together successfully most of the time, mistakes do occasionally happen, causing several hundred runway incursions a year and, less frequently, near misses and collisions in the United States. With this rate of incursions, it is imperative to have an independent warning system as a backup to the current system. Runway status lights, a system of automated, surveillance-driven stoplights, have been designed to provide this backup function. The lights are installed at runway-taxiway intersections and at departure points along the runways. They provide a clear signal to pilots crossing or departing from a runway, warning them of potential conflicts with traffic already on the runway. Existing FAA-installed radar surveillance is coupled with Lincoln Laboratory-developed algorithms to generate the light commands. To be compatible with operations at the busiest airports, the algorithms must drive the lights such that during normal operations pilots will almost never encounter a red light when it is safe to cross or depart from a runway. A minimal error rate must be maintained even in the face of inevitable imperfections in the surveillance system used to drive the safety logic. A prototype runway status light system has been designed at Lincoln Laboratory and installed at the Dallas/Fort Worth International Airport, where Laboratory personnel have worked with the FAA to complete an operational evaluation of the system, demonstrating the feasibility of runway status lights in the challenging, complex environment of one of the world's busiest airports.
READ LESS

Summary

To maintain safe separation of aircraft on the airport surface, air traffic controllers issue verbal clearances to pilots to sequence aircraft arrivals, departures, and runway crossings. Although controllers and pilots work together successfully most of the time, mistakes do occasionally happen, causing several hundred runway incursions a year and, less...

READ MORE

Common CHI for en route ATC automation in FFP1 and beyond

Published in:
45th Annual Air Traffic Control Association Conf. Proc., 22-26 October 2000, pp. 237-241.

Summary

Unique computer-human interface (CHI) challenges are arising with the pending deployment of automation developed to assist air traffic controllers and managers. In the US, a set of Free Flight Phase 1 (FFPl) decision-support tools will provide computer generated scheduling and sequencing advice from Traffic Management Advisor (TMA) and conflict probing advice from User Request Evaluation Tool (URET). These tools were originally developed independently using their own CHIs. Recently, the air traffic community requested that future tools be implemented as an integrated functionality with a consistent look and feel modeled on Eurocontrol's innovative Operational Display and Input Development (ODID) IV. M.I.T. Lincoln Laboratory presented an initial comparative study of FAA and Eurocontrol tools that identified several key inconsistencies between the newly deployed Display System Replacement (DSR), the upcoming FFPl and the future ODID-like CHIs at ATCA 1999. This paper expands the survey to add the ETMS Traffic Situation Display (TSD) and to include a comparison of all look and feel aspects of each tool ranging from the purpose and system requirements to the display and coordination features. Excerpts from the completed survey are presented in Table 1, accompanied by preliminary descriptions of resulting human factors issues that need resolution to achieve a common CHI for future air traffic control and management. In support of the FAA, the Laboratory is now applying the findings from this effort and previous controller testing in collaboration with MITRE CAASD to identify and assess CHI features to be used for a demonstration of integrated operational concepts. This effort, along with continued CHI requirements testing, communication with FAA vendors and concept demonstrations conducted in coordination with the air traffic community will lead to a comprehensive list of prioritized issues regarding a common CHI.
READ LESS

Summary

Unique computer-human interface (CHI) challenges are arising with the pending deployment of automation developed to assist air traffic controllers and managers. In the US, a set of Free Flight Phase 1 (FFPl) decision-support tools will provide computer generated scheduling and sequencing advice from Traffic Management Advisor (TMA) and conflict probing...

READ MORE

A comparative study of existing and proposed FAA and Eurocontrol CHIs for en route air traffic control

Published in:
44th Annual Air Traffic Control Association Conf. Proc., 26-30 September 1999, pp. 22-26.

Summary

In this paper we present a comparison of the Computer Human Interface (CHI) similarities and differences among the key Free Flight Phase 1 (FFP1) products for en route air traffic control (ATC) and air traffic control management (ATM) as well as some recent Eurocontrol-based CHI innovations. Our comparative study focuses on details of these disparate CHIs and the potential introduction of advanced graphical interactive features seen in the Eurocontrol CHI. Active US controllers who participated in Eurocontrol's Operational Display and Input Development (ODID) study have requested that the FAA develop an alternative CHI based on ODID and its successors such as the Denmark Sweden Interface (DSI). MIT Lincoln Laboratory has built a CHI Requirements Engineering Model (CREM) to support testing of an alternative ODID-like CHI that is feasible given the newly deployed Display System Replacement (DSR).
READ LESS

Summary

In this paper we present a comparison of the Computer Human Interface (CHI) similarities and differences among the key Free Flight Phase 1 (FFP1) products for en route air traffic control (ATC) and air traffic control management (ATM) as well as some recent Eurocontrol-based CHI innovations. Our comparative study focuses...

READ MORE

Lessons learned designing an alternative CHI for en route air traffic control

Published in:
Controller Centered HMI, 27-29 April 1999.

Summary

MIT Lincoln Laboratory is supporting the FAA-sponsored effort to design an operationally suitable Computer Human Interface (CHI) for the recently upgraded En Route Air Traffic Control Centers. All centers will soon receive new control consoles with state-of-the-art 20 square (2K by 2K resolution) color displays (currently operating in Seattle as of January 1999). The future CHI is being modeled on Eurocontrol's Operational Display and Input Development (ODID) CHI, as requested by active controllers in the US. The ODID-like CHI, with its minimal information display and color coded guidance, provides increased efficiency and productivity through employment of a modern graphical user interface. Lessons learned during the on-going design process, including research of look and feel issues in conjunction with data analysis from controller-in-the-loop testing of a prototype ODID-like CHI will be discussed. The Laboratory plans to model the alternative ODID-like CHI on the best of the European ODID, Denmark Sweden Interface (DSI) and EATCHIP CHI features, while cognizant of the FAA?s DSR capabilities and limitations to support an improved user interface. Human factors issues need resolution to provide a consistent look and feel across the Free Flight Phase 1 products and platforms, the Center TRACON Automation System (CTAS) and the User Request Evaluation Tool (URET). MIT Lincoln Laboratory has built a CHI Requirements Engineering Model (CREM) to support controller-in-the-loop testing of the ODID-like CHI, validate CHI requirements and determine applicable standards for the design of an integrated CHI. The CREM provides a means to assess various CHI alternatives and the capability to iterate options with controller teams to address user concerns. Lessons learned from the ODID-like CHI specification process will also be shared.
READ LESS

Summary

MIT Lincoln Laboratory is supporting the FAA-sponsored effort to design an operationally suitable Computer Human Interface (CHI) for the recently upgraded En Route Air Traffic Control Centers. All centers will soon receive new control consoles with state-of-the-art 20 square (2K by 2K resolution) color displays (currently operating in Seattle as...

READ MORE

En route ATM decision support tool computer-human interface requirements development

Published in:
2nd USA/Europe Air Traffic Management R&D Seminar, 1-4 December 1998.

Summary

MIT Lincoln Laboratory (MIT/LL) is supporting the FAA-sponsored effort to specify Computer Human Interface (CHI) requirements for the En Route Air Traffic Management Decision Support Tools (ERATMDST) program. The ERATMDST CHI specification is the FAA's vehicle to ensure an operationally suitable user interface is provided for the DSTs (such as conflict probe) to support free flight. The initial draft of the ERATMDST CHI requirements was published in September 1998 and defines an initial CHI which incorporates elements of the NASA CTAS and the MITRE URET prototypes, an Operational Display and Input Development (ODID) display philosophy, and an outline of the end-state CHI. The information will be presented with a consistent, usable look and feel modeled on the advanced human-centered CHI developed by Eurocontrol. This paper describes a CHI Requirements Engineering Model (CREM) and presents preliminary test results of ODID-like display elements in the ERATMDST CHI with controller-in- the-loop simulations presented in terms of workload and response times.
READ LESS

Summary

MIT Lincoln Laboratory (MIT/LL) is supporting the FAA-sponsored effort to specify Computer Human Interface (CHI) requirements for the En Route Air Traffic Management Decision Support Tools (ERATMDST) program. The ERATMDST CHI specification is the FAA's vehicle to ensure an operationally suitable user interface is provided for the DSTs (such as...

READ MORE

Controller-human interface design for the final approach spacing tool

Published in:
Proc. IFAC Man-Machine Systems Conf., 27-29 June 1995, pp. 559-564.

Summary

The Federal Aviation Administration is developing a set of software tools, known as the Center-TRACON Automation System (CTAS) to assist air traffic controllers in their management and control tasks. CTAS originated at National Aeronautics and Space Administration (NASA) Ames Research Center, where prototypes continue to evolve. In parallel, Massachusetts Institute of Technology/Lincoln Laboratory (MIT/LL) is refining and testing the software, including the Computer-Human Interface (CHI). This paper focuses on the CHI designed by MIT/LL for the Final Approach Spacing Tool (FAST) part of CTAS. The FAST design approach, CHI development and operational concept is presented.
READ LESS

Summary

The Federal Aviation Administration is developing a set of software tools, known as the Center-TRACON Automation System (CTAS) to assist air traffic controllers in their management and control tasks. CTAS originated at National Aeronautics and Space Administration (NASA) Ames Research Center, where prototypes continue to evolve. In parallel, Massachusetts Institute...

READ MORE

Real-time simulation for air traffic control research and development

Published in:
Proc. 1990 Air Traffic Control Association Conf., September 1990, pp. 378-384.

Summary

An approach is suggested for the incremental use of real-time ATC simulations for concept development and human factors evaluation of automation systems. Emphasis is placed on the characteristics that distinguish research simulators from those used primarily for training. Four general levels of simulator fidelity are identified for two ATC environments of interest: the radar room and the control tower. Fidelity requirements are generated by the specific needs of the particular human factors study to be conducted, ranging from part-task single-controller simulation used for concept demonstration to full-mission simulation of multiple ATC facilities to examine issues of interaction among automation systems. This approach is applicable to smaller simulations performed at an R&D contractor site as well as large-scale system integration studies conducted at a high-fidelity, centralized, simulation facility. It has been applied to the design of simulations of ATCT and TRACON environments that are being used for the evaluation of displays, controls, and procedures for the Airport Surface Traffic Automation (ASTA) and Terminal ATC Automation (TATCA) projects.
READ LESS

Summary

An approach is suggested for the incremental use of real-time ATC simulations for concept development and human factors evaluation of automation systems. Emphasis is placed on the characteristics that distinguish research simulators from those used primarily for training. Four general levels of simulator fidelity are identified for two ATC environments...

READ MORE

Showing Results

1-10 of 10