Publications

Refine Results

(Filters Applied) Clear All

Operational evaluation of runway status lights

Published in:
Lincoln Laboratory Journal, Vol. 16, No. 1, June 2006, pp. 123-146.

Summary

To maintain safe separation of aircraft on the airport surface, air traffic controllers issue verbal clearances to pilots to sequence aircraft arrivals, departures, and runway crossings. Although controllers and pilots work together successfully most of the time, mistakes do occasionally happen, causing several hundred runway incursions a year and, less frequently, near misses and collisions in the United States. With this rate of incursions, it is imperative to have an independent warning system as a backup to the current system. Runway status lights, a system of automated, surveillance-driven stoplights, have been designed to provide this backup function. The lights are installed at runway-taxiway intersections and at departure points along the runways. They provide a clear signal to pilots crossing or departing from a runway, warning them of potential conflicts with traffic already on the runway. Existing FAA-installed radar surveillance is coupled with Lincoln Laboratory-developed algorithms to generate the light commands. To be compatible with operations at the busiest airports, the algorithms must drive the lights such that during normal operations pilots will almost never encounter a red light when it is safe to cross or depart from a runway. A minimal error rate must be maintained even in the face of inevitable imperfections in the surveillance system used to drive the safety logic. A prototype runway status light system has been designed at Lincoln Laboratory and installed at the Dallas/Fort Worth International Airport, where Laboratory personnel have worked with the FAA to complete an operational evaluation of the system, demonstrating the feasibility of runway status lights in the challenging, complex environment of one of the world's busiest airports.
READ LESS

Summary

To maintain safe separation of aircraft on the airport surface, air traffic controllers issue verbal clearances to pilots to sequence aircraft arrivals, departures, and runway crossings. Although controllers and pilots work together successfully most of the time, mistakes do occasionally happen, causing several hundred runway incursions a year and, less...

READ MORE

Surveillance performance requirements for runway incursion prevention systems

Published in:
MIT Lincoln Laboratory Report ATC-301

Summary

In response to concerns over the number of runway incursions and runway conflicts at U.S. airports, the FAA is sponsoring research and development of safety systems for the airport surface. Two types of safety systems are being actively pursued, a tower cab alerting system and a runway status light system. The tower cab alerting system, called the Airport Movement Area Safety System (AMASS) is currently undergoing initial operational evaluation at several major airports. It provides aural and visual alerts to the tower cab to warn the controllers of potential traffic conflicts. The runway status light system is currently in the development phase, with initial operational suitability demonstrations planned at Dallas/Fort Worth International Airport during FY2003. Intended to offer protection in time-critical conflict scenarios where there is not enough time to warn the aircrews indirectly via the tower cab, the runway status light system provides visual indication of runway status directly to the cockpit; runway entrance lights warn pilots not to enter a runway on which there is approaching high-speed traffic; takeoff-hold lights warn pilots not to start takeoff if a conflict could occur. Both systems operate automatically, requiring no controller inputs. Activation commands for alerts and lights are generated by the systems' safety logic, which in turn receives airport traffic inputs from a surface surveillance and target tracking system. Accurate traffic representation is essential to meet system requirements, which include high conflict detection rate, prompt and accurate alerting and light activation, low nuisance and false alarm rates, and negligible interference with normal operations. This report analyzes the effect of the two fundamental surveillance performance parameters-position accuracy and surveillance update rate - on the performance of three different surface safety systems. The first two are the above-mentioned tower cab alerting and runway status light systems. The third system is a hypothetical cockpit alerting system that delivers alerts directly to the cockpit rather than to the tower cab. The surveillance accuracy and update rate requirements of these three systems are analyzed for three of the most common runway conflict scenarios, using realistic parameter values for aircraft motion. The scenarios are 1) a runway incursion by a taxiing aircraft in front of a departure or arrival, 2) a departure on an occupied runway, and 3) an arrival on an occupied runway. Runway status lights are especially effective at preventing incursions and accidents between takeoff or arrival aircraft and intersection taxi aircraft. Tower cab alerts are effective at alerting controllers to aircraft crossing or on a runway during an arrival. Runway status information provided directly to the cockpit will be required for the case where a previous arrival or a taxi aircraft fails to exit the runway as anticipated shortly before the arrival crossed the threshold. (not complete)
READ LESS

Summary

In response to concerns over the number of runway incursions and runway conflicts at U.S. airports, the FAA is sponsoring research and development of safety systems for the airport surface. Two types of safety systems are being actively pursued, a tower cab alerting system and a runway status light system...

READ MORE

Runway status light system demonstration at Logan Airport

Summary

The Runway Status Light System (RSLS), developed under the FAA's Airport Surface Traffic Automation (ASTA) program, is intended to help reduce the incidence of runway incursions and airport surface accidents. It will do so by providing a preventive, back-up system of automatically controlled lights on the airport surface that inform pilots when runways are unsafe for entry or takeoff, and by providing controllers with enhanced surface radar displays. This report documents a proof-of-concept evaluation of the RSLS at Boston's Logan Airport. It details the methods used to provide the necessary surface surveillance and safety logic to allow a computer to operate the runway status lights and associated controller displays without human assistance. The system was installed and tested off-line at Boston's Logan Airport using an inexpensive commercial marine radar as a primary surveillance source. The system operated live and in real time but the runway status lights were not physically installed. They were displayed on a scale model of Logan Airport located in a demonstration room that had a good view of the airport. This allowed visual comparison between the actual aircraft and the resulting lights and displays. In addition to providing a convincing demonstration of the system, real-timing viewing of the aircraft movement was an important aid in the development of the surveillance processing and safety logic software. Surveillance performance and runway status light operational performance were evaluated quantitatively. The probability of tracking an aircraft in movement areas with line-of-sight coverage was better than 98%. The false track rate was about four per hour, and the surveillance jitter was about 1 meter rms. From an operational point of view, had there been real lights on the field, it appears that they would have provided the intended safety back-up with little impact on airport capacity or controller and pilot workload, Only once in 15 minutes would the pilot population have observed a light in an incorrect state for more than four seconds. From the point of view of a specific cockpit crew, only once in 36 operations would a runway status light have been seen in an incorrect state for more than four seconds, and, furthermore, only once in 50 operations would light illuminations have interfered with normal, safe traffic flow. These are encouraging results for a system in an early demonstration phase because significant improvement is possible in all of these performance measures. Specific suggestions for improvement are included in this document.
READ LESS

Summary

The Runway Status Light System (RSLS), developed under the FAA's Airport Surface Traffic Automation (ASTA) program, is intended to help reduce the incidence of runway incursions and airport surface accidents. It will do so by providing a preventive, back-up system of automatically controlled lights on the airport surface that inform...

READ MORE

Connected components and temporal association in airport surface radar tracking

Published in:
SPIE, Vol. 2220, Sensing, Imaging, and Vision for Control and Guidance of Aerospace Vehicles, 4-5 April 1994, pp. 357-379.

Summary

MIT Lincoln Laboratory, under sponsorship of the FAA, has installed a modified Raytheon pathfinder x-band marine radar at Logan Airport in Boston, Mass. and has developed a real- time surveillance system based on the pathfinder's digitized output. The surveillance system provides input to a safety logic system that will ultimately activate a set of runway status lights. This paper describes the portion of the surveillance system following the initial clutter- rejecting preprocessing, described elsewhere. The overall mechanism can be simply described as a temporal constant false alarm rate front end followed by binary morphological operations including connected components feeding a scan-to-scan tracker. However, a number of refinements have been added leading to a system which is close to being fieldable. Both the special difficulties and the current solutions are examined. The radar hardware as well as the computational environment are discussed. An overview of the clutter rejection preprocessing is given, as well as physical and processing related challenges associated with the data. Algorithmic description of the current system is presented and its real-time implementation outlined. Performance statistics and envisioned algorithmic improvements are presented.
READ LESS

Summary

MIT Lincoln Laboratory, under sponsorship of the FAA, has installed a modified Raytheon pathfinder x-band marine radar at Logan Airport in Boston, Mass. and has developed a real- time surveillance system based on the pathfinder's digitized output. The surveillance system provides input to a safety logic system that will ultimately...

READ MORE

Radar images of Logan Airport and application in automated aircraft tracking

Published in:
SPIE, Vol. 2220, Sensing, Imaging, and Vision for Control and Guidance of Aerospace Vehicles, 4-5 April 1994, pp. 316-327.

Summary

To enhance safety and expedite aircraft traffic control at airports, the Federal Aviation Administration (FAA) is in the process of developing automation aids for controllers and pilots. These automation improvements depend on reliable surveillance of the airport traffic, in the form of computerized target reports for all aircraft. One means of surveillance of the airport is primary radar. A short range radar of this type is called airport surface detection equipment or (ASDE). Lincoln Laboratory is participating in this development program by testing a system of surveillance and automation aids at Logan International Airport in Boston, Mass. This work is sponsored by the FAA. This paper describes the radar equipment being used for surface surveillance at Logan Airport and the characteristics of the radar images it produces. Techniques for automatic tracking of this radar data are also described along with a summary of the tracking performance that has been achieved. Two companion papers in this session relate to this same radar surveillance and provide more in-depth descriptions of the radar processing.
READ LESS

Summary

To enhance safety and expedite aircraft traffic control at airports, the Federal Aviation Administration (FAA) is in the process of developing automation aids for controllers and pilots. These automation improvements depend on reliable surveillance of the airport traffic, in the form of computerized target reports for all aircraft. One means...

READ MORE

Showing Results

1-5 of 5