Publications

Refine Results

(Filters Applied) Clear All

The orthogonal-transfer array: a new CCD architecture for astronomy

Published in:
SPIE Vol. 5499, Optical and Infrared Detectors for Astronomy, 21 June 2004, pp. 185-192.

Summary

The orthogonal-transfer array (OTA) is a new CCD architecture designed to provide wide-field tip-tilt correction of astronomical images. The device consists of an 8..8 array of small (~500x500 pixels) orthogonal-transfer CCDs (OTCCD) with independent addressing and readout of each OTCCD. This approach enables an optimum tip-tilt correction to be applied independently to each OTCCD across the focal plane. The first design of this device has been carried out at MIT Lincoln Laboratory in support of the Pan-STARRS program with a collaborative parallel effort at Semiconductor Technology Associates (STA) for the WIYN Observatory. The two versions of this device are functionally compatible and share a common pinout and package. The first wafer lots are complete at Lincoln and at Dalsa and are undergoing wafer probing.
READ LESS

Summary

The orthogonal-transfer array (OTA) is a new CCD architecture designed to provide wide-field tip-tilt correction of astronomical images. The device consists of an 8..8 array of small (~500x500 pixels) orthogonal-transfer CCDs (OTCCD) with independent addressing and readout of each OTCCD. This approach enables an optimum tip-tilt correction to be applied...

READ MORE

High-fill-factor, burst-frame-rate charge-coupled device

Published in:
SPIE Vol. 5210, Ultrahigh- and High-Speed Photography, Photonics, and Videography, 3-8 August 2003, pp. 95-104.

Summary

A 512x512-element, multi-frame charge-coupled device (CCD) has been developed for collecting four sequential image frames at megahertz rates. To operate at fast frame rates with high sensitivity, the imager uses an electronic shutter technology developed for back-illuminated CCDs. Device-level simulations were done to estimate the CCD collection well spaces for sub-microsecond photoelectron collection times. Also required for the high frame rates were process enhancements that included metal strapping of the polysilicon gate electrodes and a second metal layer. Tests on finished back-illuminated CCD imagers have demonstrated sequential multi-frame capture capability with integration intervals in the hundreds of nanoseconds range.
READ LESS

Summary

A 512x512-element, multi-frame charge-coupled device (CCD) has been developed for collecting four sequential image frames at megahertz rates. To operate at fast frame rates with high sensitivity, the imager uses an electronic shutter technology developed for back-illuminated CCDs. Device-level simulations were done to estimate the CCD collection well spaces for...

READ MORE

High-speed, electronically shuttered solid-state imager technology

Published in:
Rev. Sci. Instrum. Vol. 74, No. 3, Pt. II, March 2003, pp. 2027-2031 (Proceedings of the 14th Topical Conference on High-Temperature Plasma Diagnostics, 8-11 July 2002)

Summary

Electronically shuttered solid-state imagers are being developed for high-speed imaging applications. A 5 cmx5 cm, 512x512-element, multiframe charge-coupled device (CCD) imager has been fabricated for the Los Alamos National Laboratory DARHT facility that collects four sequential image frames at megahertz rates. To operate at fast frame rates with high sensitivity, the imager uses an electronic shutter technology designed for back-illuminated CCDs. The design concept and test results are described for the burst-frame-rate imager. Also discussed is an evolving solid-state imager technology that has interesting characteristics for creating large-format x-ray detectors with short integration times (100 ps to 1 ns). Proposed device architectures use CMOS technology for high speed sampling (tens of picoseconds transistor switching times). Techniques for parallel clock distribution, that triggers the sampling of x-ray photoelectrons, will be described that exploit features of CMOS technology.
READ LESS

Summary

Electronically shuttered solid-state imagers are being developed for high-speed imaging applications. A 5 cmx5 cm, 512x512-element, multiframe charge-coupled device (CCD) imager has been fabricated for the Los Alamos National Laboratory DARHT facility that collects four sequential image frames at megahertz rates. To operate at fast frame rates with high sensitivity...

READ MORE

Broadband (200-1000 nm) back-illuminated ccd imagers

Summary

Improved and stable blue/UV quantum efficiency has been demonstrated on 2Kx4K imagers using molecular-beam epitaxy to create a thin doped layer on the back surface. Quantum efficiency data on thick (40-50 pm) imagers with single and dual-layer anti-reflection coatings is presented that demonstrates high and broadband response. Measurements of the optical point-spread response show the devices to be fully depleted with good response across a broad spectrum, but interesting features appear in the near-IR as a result of deeply penetrating light being scattered off the surface structure of the CCD.
READ LESS

Summary

Improved and stable blue/UV quantum efficiency has been demonstrated on 2Kx4K imagers using molecular-beam epitaxy to create a thin doped layer on the back surface. Quantum efficiency data on thick (40-50 pm) imagers with single and dual-layer anti-reflection coatings is presented that demonstrates high and broadband response. Measurements of the...

READ MORE

Geiger-mode avalanche photodiodes for three-dimensional imaging

Published in:
Lincoln Laboratory Journal, Vol. 13, No. 2, 2002, pp. 335-350.

Summary

We discuss the properties of Geiger-mode avalanche photodiodes (APDs) and their use in developing an imaging laser radar (ladar). This type of photodetector gives a fast electrical pulse in response to the detection of even a single photon, allowing for sub-nsec-precision photon-flight-time measurement. We present ongoing work at Lincoln Laboratory on three-dimensional (3D) imaging with arrays of these diodes, and the integration of the arrays with fast complementary metal-oxide semiconductor (CMOS) digital timing circuits.
READ LESS

Summary

We discuss the properties of Geiger-mode avalanche photodiodes (APDs) and their use in developing an imaging laser radar (ladar). This type of photodetector gives a fast electrical pulse in response to the detection of even a single photon, allowing for sub-nsec-precision photon-flight-time measurement. We present ongoing work at Lincoln Laboratory...

READ MORE

Soft-x-ray CCD imagers for AXAF

Published in:
IEEE Trans. Electron Devices, Vol. 44, No. 10, October 1997, pp. 1633-1642.

Summary

We describe the key features and performance data of a 1024 x 1026-pixel frame-transfer imager for use as a soft-x-ray detector on the NASA X-ray observatory Advanced X-ray Astrophysics Facility (AXAF). The four-port device features a floating-diffusion output circuit with a responsivity of 20/spl mu/V/e/sup -/ and noise of about 2 e/sup -/ at a 100-kHz data rate. Techniques for achieving the low sense-node capacitance of 5 fF are described. The CCD is fabricated on high-resistivity p-type silicon for deep depletion and includes narrow potential troughs for transfer inefficiencies of around 10/sup -7/ (ten to the negative 7). To achieve good sensitivity at energies below 1 keV, we have developed a back-illumination process that features low recombination losses at the back surface and has produced efficiencies of about 0.7 at 277 eV (carbon K/spl alpha/).
READ LESS

Summary

We describe the key features and performance data of a 1024 x 1026-pixel frame-transfer imager for use as a soft-x-ray detector on the NASA X-ray observatory Advanced X-ray Astrophysics Facility (AXAF). The four-port device features a floating-diffusion output circuit with a responsivity of 20/spl mu/V/e/sup -/ and noise of about...

READ MORE