Publications
Tagged As
Combating Misinformation: HLT Highlights from MIT Lincoln Laboratory
Summary
Summary
Dr. Joseph Campbell shares several human language technologies highlights from MIT Lincoln Laboratory. These include key enabling technologies in combating misinformation to link personas, analyze content, and understand human networks. Developing operationally relevant technologies requires access to corresponding data with meaningful evaluations, as Dr. Douglas Reynolds presented in his keynote...
Combating Misinformation: What HLT Can (and Can't) Do When Words Don't Say What They Mean
Summary
Summary
Misinformation, disinformation, and “fake news” have been used as a means of influence for millennia, but the proliferation of the internet and social media in the 21st century has enabled nefarious campaigns to achieve unprecedented scale, speed, precision, and effectiveness. In the past few years, there has been significant recognition...
The 2019 NIST Speaker Recognition Evaluation CTS Challenge
Summary
Summary
In 2019, the U.S. National Institute of Standards and Technology (NIST) conducted a leaderboard style speaker recognition challenge using conversational telephone speech (CTS) data extracted from the unexposed portion of the Call My Net 2 (CMN2) corpus previously used in the 2018 Speaker Recognition Evaluation (SRE). The SRE19 CTS Challenge...
Using K-means in SVR-based text difficulty estimation
Summary
Summary
A challenge for second language learners, educators, and test creators is the identification of authentic materials at the right level of difficulty. In this work, we present an approach to automatically measure text difficulty, integrated into Auto-ILR, a web-based system that helps find text material at the right level for...
The AFRL-MITLL WMT16 news-translation task systems
Summary
Summary
This paper describes the AFRL-MITLL statistical machine translation systems and the improvements that were developed during the WMT16 evaluation campaign. New techniques applied this year include Neural Machine Translation, a unique selection process for language modelling data, additional out-of-vocabulary transliteration techniques, and morphology generation.
Operational assessment of keyword search on oral history
Summary
Summary
This project assesses the resources necessary to make oral history searchable by means of automatic speech recognition (ASR). There are many inherent challenges in applying ASR to conversational speech: smaller training set sizes and varying demographics, among others. We assess the impact of dataset size, word error rate and term-weighted...
A fun and engaging interface for crowdsourcing named entities
Summary
Summary
There are many current problems in natural language processing that are best solved by training algorithms on an annotated in-language, in-domain corpus. The more representative the training corpus is of the test data, the better the algorithm will perform, but also the less likely it is that such a corpus...
Analysis of factors affecting system performance in the ASpIRE challenge
Summary
Summary
This paper presents an analysis of factors affecting system performance in the ASpIRE (Automatic Speech recognition In Reverberant Environments) challenge. In particular, overall word error rate (WER) of the solver systems is analyzed as a function of room, distance between talker and microphone, and microphone type. We also analyze speech...
The MITLL-AFRL IWSLT 2015 Systems
Summary
Summary
This report summarizes the MITLL-AFRL MT, ASR and SLT systems and the experiments run using them during the 2015 IWSLT evaluation campaign. We build on the progress made last year, and additionally experimented with neural MT, unknown word processing, and system combination. We applied these techniques to translating Chinese to...
The AFRL-MITLL WMT15 System: there's more than one way to decode it!
Summary
Summary
This paper describes the AFRL-MITLL statistical MT systems and the improvements that were developed during the WMT15 evaluation campaign. As part of these efforts we experimented with a number of extensions to the standard phrase-based model that improve performance on the Russian to English translation task creating three submission systems...