Publications

Refine Results

(Filters Applied) Clear All

Corpora design and score calibration for text dependent pronunciation proficiency recognition

Published in:
8th ISCA Workshop on Speech and Language Technology in Education, SLaTe 2019, 20-21 September 2019.

Summary

This work investigates methods for improving a pronunciation proficiency recognition system, both in terms of phonetic level posterior probability calibration, and in ordinal utterance level classification, for Modern Standard Arabic (MSA), Spanish and Russian. To support this work, utterance level labels were obtained by crowd-sourcing the annotation of language learners' recordings. Phonetic posterior probability estimates extracted using automatic speech recognition systems trained in each language were estimated using a beta calibration approach [1] and language proficiency level was estimated using an ordinal regression [2]. Fusion with language recognition (LR) scores from an i-vector system [3] trained on 23 languages is also explored. Initial results were promising for all three languages and it was demonstrated that the calibrated posteriors were effective for predicting pronunciation proficiency. Significant relative gains of 16% mean absolute error for the ordinal regression and 17% normalized cross entropy for the binary beta regression were achieved on MSA through fusion with LR scores.
READ LESS

Summary

This work investigates methods for improving a pronunciation proficiency recognition system, both in terms of phonetic level posterior probability calibration, and in ordinal utterance level classification, for Modern Standard Arabic (MSA), Spanish and Russian. To support this work, utterance level labels were obtained by crowd-sourcing the annotation of language learners'...

READ MORE

Using K-means in SVR-based text difficulty estimation

Published in:
8th ISCA Workshop on Speech and Language Technology in Education, SLaTE, 20-21 September 2019.

Summary

A challenge for second language learners, educators, and test creators is the identification of authentic materials at the right level of difficulty. In this work, we present an approach to automatically measure text difficulty, integrated into Auto-ILR, a web-based system that helps find text material at the right level for learners in 18 languages. The Auto-ILR subscription service scans web feeds, extracts article content, evaluates the difficulty, and notifies users of documents that match their skill level. Difficulty is measured on the standard ILR scale with language-specific support vector machine regression (SVR) models built from vectors incorporating length features, term frequencies, relative entropy, and K-means clustering.
READ LESS

Summary

A challenge for second language learners, educators, and test creators is the identification of authentic materials at the right level of difficulty. In this work, we present an approach to automatically measure text difficulty, integrated into Auto-ILR, a web-based system that helps find text material at the right level for...

READ MORE

Showing Results

1-2 of 2