Publications

Refine Results

(Filters Applied) Clear All

The MITLL-AFRL IWSLT 2015 Systems

Summary

This report summarizes the MITLL-AFRL MT, ASR and SLT systems and the experiments run using them during the 2015 IWSLT evaluation campaign. We build on the progress made last year, and additionally experimented with neural MT, unknown word processing, and system combination. We applied these techniques to translating Chinese to English and English to Chinese. ASR systems are also improved by reining improvements developed last year. Finally, we combine our ASR and MT systems to produce a English to Chinese SLT system.
READ LESS

Summary

This report summarizes the MITLL-AFRL MT, ASR and SLT systems and the experiments run using them during the 2015 IWSLT evaluation campaign. We build on the progress made last year, and additionally experimented with neural MT, unknown word processing, and system combination. We applied these techniques to translating Chinese to...

READ MORE

The AFRL-MITLL WMT15 System: there's more than one way to decode it!

Published in:
Proc. 10th Workshop on Statistical Machine Translation, 17-18 September 2015, pp. 112-9.

Summary

This paper describes the AFRL-MITLL statistical MT systems and the improvements that were developed during the WMT15 evaluation campaign. As part of these efforts we experimented with a number of extensions to the standard phrase-based model that improve performance on the Russian to English translation task creating three submission systems with different decoding strategies. Out of vocabulary words were addressed with named entity postprocessing.
READ LESS

Summary

This paper describes the AFRL-MITLL statistical MT systems and the improvements that were developed during the WMT15 evaluation campaign. As part of these efforts we experimented with a number of extensions to the standard phrase-based model that improve performance on the Russian to English translation task creating three submission systems...

READ MORE

Showing Results

1-2 of 2