Publications
Backdoor poisoning of encrypted traffic classifiers
Summary
Summary
Significant recent research has focused on applying deep neural network models to the problem of network traffic classification. At the same time, much has been written about the vulnerability of deep neural networks to adversarial inputs, both during training and inference. In this work, we consider launching backdoor poisoning attacks...
System analysis for responsible design of modern AI/ML systems
Summary
Summary
The irresponsible use of ML algorithms in practical settings has received a lot of deserved attention in the recent years. We posit that the traditional system analysis perspective is needed when designing and implementing ML algorithms and systems. Such perspective can provide a formal way for evaluating and enabling responsible...
Probabilistic coordination of heterogeneous teams from capability temporal logic specifications
Summary
Summary
This letter explores coordination of heterogeneous teams of agents from high-level specifications. We employ Capability Temporal Logic (CaTL) to express rich, temporal-spatial tasks that require cooperation between many agents with unique capabilities. CaTL specifies combinations of tasks, each with desired locations, duration, and set of capabilities, freeing the user from...
Fast decomposition of temporal logic specifications for heterogeneous teams
Summary
Summary
We focus on decomposing large multi-agent path planning problems with global temporal logic goals (common to all agents) into smaller sub-problems that can be solved and executed independently. Crucially, the sub-problems' solutions must jointly satisfy the common global mission specification. The agents' missions are given as Capability Temporal Logic (CaTL)...
Tools and practices for responsible AI engineering
Summary
Summary
Responsible Artificial Intelligence (AI)—the practice of developing, evaluating, and maintaining accurate AI systems that also exhibit essential properties such as robustness and explainability—represents a multifaceted challenge that often stretches standard machine learning tooling, frameworks, and testing methods beyond their limits. In this paper, we present two new software libraries—hydra-zen and...
Scalable and Robust Algorithms for Task-Based Coordination From High-Level Specifications (ScRATCHeS)
Summary
Summary
Many existing approaches for coordinating heterogeneous teams of robots either consider small numbers of agents, are application-specific, or do not adequately address common real world requirements, e.g., strict deadlines or intertask dependencies. We introduce scalable and robust algorithms for task-based coordination from high-level specifications (ScRATCHeS) to coordinate such teams. We...
Principles for evaluation of AI/ML model performance and robustness, revision 1
Summary
Summary
The Department of Defense (DoD) has significantly increased its investment in the design, evaluation, and deployment of Artificial Intelligence and Machine Learning (AI/ML) capabilities to address national security needs. While there are numerous AI/ML successes in the academic and commercial sectors, many of these systems have also been shown to...
Fast training of deep neural networks robust to adversarial perturbations
Summary
Summary
Deep neural networks are capable of training fast and generalizing well within many domains. Despite their promising performance, deep networks have shown sensitivities to perturbations of their inputs (e.g., adversarial examples) and their learned feature representations are often difficult to interpret, raising concerns about their true capability and trustworthiness. Recent...
Safe predictors for enforcing input-output specifications [e-print]
Summary
Summary
We present an approach for designing correct-by-construction neural networks (and other machine learning models) that are guaranteed to be consistent with a collection of input-output specifications before, during, and after algorithm training. Our method involves designing a constrained predictor for each set of compatible constraints, and combining them safely via...
AI enabling technologies: a survey
Summary
Summary
Artificial Intelligence (AI) has the opportunity to revolutionize the way the United States Department of Defense (DoD) and Intelligence Community (IC) address the challenges of evolving threats, data deluge, and rapid courses of action. Developing an end-to-end artificial intelligence system involves parallel development of different pieces that must work together...