Publications

Refine Results

(Filters Applied) Clear All

Poisoning network flow classifiers [e-print]

Summary

As machine learning (ML) classifiers increasingly oversee the automated monitoring of network traffic, studying their resilience against adversarial attacks becomes critical. This paper focuses on poisoning attacks, specifically backdoor attacks, against network traffic flow classifiers. We investigate the challenging scenario of clean-label poisoning where the adversary's capabilities are constrained to tampering only with the training data - without the ability to arbitrarily modify the training labels or any other component of the training process. We describe a trigger crafting strategy that leverages model interpretability techniques to generate trigger patterns that are effective even at very low poisoning rates. Finally, we design novel strategies to generate stealthy triggers, including an approach based on generative Bayesian network models, with the goal of minimizing the conspicuousness of the trigger, and thus making detection of an ongoing poisoning campaign more challenging. Our findings provide significant insights into the feasibility of poisoning attacks on network traffic classifiers used in multiple scenarios, including detecting malicious communication and application classification.
READ LESS

Summary

As machine learning (ML) classifiers increasingly oversee the automated monitoring of network traffic, studying their resilience against adversarial attacks becomes critical. This paper focuses on poisoning attacks, specifically backdoor attacks, against network traffic flow classifiers. We investigate the challenging scenario of clean-label poisoning where the adversary's capabilities are constrained to...

READ MORE

Backdoor poisoning of encrypted traffic classifiers

Summary

Significant recent research has focused on applying deep neural network models to the problem of network traffic classification. At the same time, much has been written about the vulnerability of deep neural networks to adversarial inputs, both during training and inference. In this work, we consider launching backdoor poisoning attacks against an encrypted network traffic classifier. We consider attacks based on padding network packets, which has the benefit of preserving the functionality of the network traffic. In particular, we consider a handcrafted attack, as well as an optimized attack leveraging universal adversarial perturbations. We find that poisoning attacks can be extremely successful if the adversary has the ability to modify both the labels and the data (dirty label attacks) and somewhat successful, depending on the attack strength and the target class, if the adversary perturbs only the data (clean label attacks).
READ LESS

Summary

Significant recent research has focused on applying deep neural network models to the problem of network traffic classification. At the same time, much has been written about the vulnerability of deep neural networks to adversarial inputs, both during training and inference. In this work, we consider launching backdoor poisoning attacks...

READ MORE

Showing Results

1-2 of 2