Publications

Refine Results

(Filters Applied) Clear All

Probabilistic coordination of heterogeneous teams from capability temporal logic specifications

Summary

This letter explores coordination of heterogeneous teams of agents from high-level specifications. We employ Capability Temporal Logic (CaTL) to express rich, temporal-spatial tasks that require cooperation between many agents with unique capabilities. CaTL specifies combinations of tasks, each with desired locations, duration, and set of capabilities, freeing the user from considering specific agent trajectories and their impact on multi-agent cooperation. CaTL also provides a quantitative robustness metric of satisfaction based on availability of required capabilities for each task. The novelty of this letter focuses on satisfaction of CaTL formulas under probabilistic conditions. Specifically, we consider uncertainties in robot motion (e.g., agents may fail to transition between regions with some probability) and local probabilistic workspace properties (e.g., if there are not enough agents of a required capability to complete a collaborative task). The proposed approach automatically formulates amixed-integer linear program given agents, their dynamics and capabilities, an abstraction of the workspace, and a CaTL formula. In addition to satisfying the given CaTL formula, the optimization considers the following secondary goals (in decreasing order of priority): 1) minimize the risk of transition failure due to uncertainties; 2) maximize probabilities of regional collaborative satisfaction (if there is an excess of agents); 3) maximize the availability robustness of CaTL for potential agent attrition; 4) minimize the total agent travel time. We evaluate the performance of the proposed framework and demonstrate its scalability via numerical simulations.
READ LESS

Summary

This letter explores coordination of heterogeneous teams of agents from high-level specifications. We employ Capability Temporal Logic (CaTL) to express rich, temporal-spatial tasks that require cooperation between many agents with unique capabilities. CaTL specifies combinations of tasks, each with desired locations, duration, and set of capabilities, freeing the user from...

READ MORE

Fast decomposition of temporal logic specifications for heterogeneous teams

Published in:
IEEE Robot. Autom. Lett., Vol. 7, No. 2, April 2022, pp. 2297-2304.

Summary

We focus on decomposing large multi-agent path planning problems with global temporal logic goals (common to all agents) into smaller sub-problems that can be solved and executed independently. Crucially, the sub-problems' solutions must jointly satisfy the common global mission specification. The agents' missions are given as Capability Temporal Logic (CaTL) formulas, a fragment of Signal Temporal Logic (STL) that can express properties over tasks involving multiple agent capabilities (i.e., different combinations of sensors, effectors, and dynamics) under strict timing constraints. We jointly decompose both the temporal logic specification and the team of agents, using a satisfiability modulo theories (SMT) approach and heuristics for handling temporal operators. The output of the SMT is then distributed to subteams and leads to a significant speed up in planning time compared to planning for the entire team and specification. We include computational results to evaluate the efficiency of our solution, as well as the trade-offs introduced by the conservative nature of the SMT encoding and heuristics.
READ LESS

Summary

We focus on decomposing large multi-agent path planning problems with global temporal logic goals (common to all agents) into smaller sub-problems that can be solved and executed independently. Crucially, the sub-problems' solutions must jointly satisfy the common global mission specification. The agents' missions are given as Capability Temporal Logic (CaTL)...

READ MORE

Scalable and Robust Algorithms for Task-Based Coordination From High-Level Specifications (ScRATCHeS)

Summary

Many existing approaches for coordinating heterogeneous teams of robots either consider small numbers of agents, are application-specific, or do not adequately address common real world requirements, e.g., strict deadlines or intertask dependencies. We introduce scalable and robust algorithms for task-based coordination from high-level specifications (ScRATCHeS) to coordinate such teams. We define a specification language, capability temporal logic, to describe rich, temporal properties involving tasks requiring the participation of multiple agents with multiple capabilities, e.g., sensors or end effectors. Arbitrary missions and team dynamics are jointly encoded as constraints in a mixed integer linear program, and solved efficiently using commercial off-the-shelf solvers. ScRATCHeS optionally allows optimization for maximal robustness to agent attrition at the penalty of increased computation time.We include an online replanning algorithm that adjusts the plan after an agent has dropped out. The flexible specification language, fast solution time, and optional robustness of ScRATCHeS provide a first step toward a multipurpose on-the-fly planning tool for tasking large teams of agents with multiple capabilities enacting missions with multiple tasks. We present randomized computational experiments to characterize scalability and hardware demonstrations to illustrate the applicability of our methods.
READ LESS

Summary

Many existing approaches for coordinating heterogeneous teams of robots either consider small numbers of agents, are application-specific, or do not adequately address common real world requirements, e.g., strict deadlines or intertask dependencies. We introduce scalable and robust algorithms for task-based coordination from high-level specifications (ScRATCHeS) to coordinate such teams. We...

READ MORE

Showing Results

1-3 of 3