Publications

Refine Results

(Filters Applied) Clear All

Ultrawideband time-delay steered UHF dipole linear array antenna

Published in:
2013 IEEE Int. Symp. On Phased Array Systems and Technology, 15-18 October 2013.

Summary

An ultrawideband fixed time-delay steered UHF dipole array antenna has been developed for coverage in the 300 to 450 MHz frequency range for communications or radar applications. The antenna utilizes a parasitically-tuned dipole array for linear polarization and is mounted over a ground plane. Numerical electromagnetic simulations were used to analyze and optimize the antenna parameters prior to fabrication. Measurements of the prototype antenna in an anechoic chamber demonstrate the antenna's reflection coefficient and radiation gain pattern performance.
READ LESS

Summary

An ultrawideband fixed time-delay steered UHF dipole array antenna has been developed for coverage in the 300 to 450 MHz frequency range for communications or radar applications. The antenna utilizes a parasitically-tuned dipole array for linear polarization and is mounted over a ground plane. Numerical electromagnetic simulations were used to...

READ MORE

Ultrawideband cavity-backed resistively loaded planar dipole array for ground penetrating radar

Published in:
2013 IEEE Int. Symp. On Phased Array Systems and Technology, 15-18 October 2013.

Summary

An ultrawideband (UWB) cavity-backed resistively loaded planar dipole array antenna has been developed for the 100 to 400 MHz frequency range for ground penetrating radar applications. The antenna has been designed with a 3m aperture to perform surveys of a wide swath of ground from a moving vehicle. The performance of the UWB array is quantified by moment method simulations of the electromagnetic field penetration into lossy soil. Integration of the UWB array onto vehicle is discussed.
READ LESS

Summary

An ultrawideband (UWB) cavity-backed resistively loaded planar dipole array antenna has been developed for the 100 to 400 MHz frequency range for ground penetrating radar applications. The antenna has been designed with a 3m aperture to perform surveys of a wide swath of ground from a moving vehicle. The performance...

READ MORE

Materials in superconducting quantum bits

Published in:
MRS Bulletin, Vol 38, October 2013, pp. 816-825.

Summary

Superconducting qubits are electronic circuits comprising lithographically defined Josephson tunnel junctions, inductors, capacitors, and interconnects. When cooled to dillution refrigerator temperatures, these circuits behave as quantum mechanical "artificial atoms," exhibiting quantized states of electronic charge, magnetic flux, or junction phase depending on the design parameters of the constituent circuit elements. Their potential for lithographic scalability, compatibility with microwave control, and operability at nanosecond time scales place superconducting qubits among the leading modalities being considered for quantum information science and technology applications. Over the past decade, the quantum coherence of superconducting qubits has increased more than five orders of magnitude, due primarily to improvements in their design, fabrication, and, importantly, their constituent materials and interfaces. In this article, we review superconducting qubits, articulate the important role of materials research in their development, and provide a prospectus for the future as these devices transition from scientific curiosity to the threshold of technical reality.
READ LESS

Summary

Superconducting qubits are electronic circuits comprising lithographically defined Josephson tunnel junctions, inductors, capacitors, and interconnects. When cooled to dillution refrigerator temperatures, these circuits behave as quantum mechanical "artificial atoms," exhibiting quantized states of electronic charge, magnetic flux, or junction phase depending on the design parameters of the constituent circuit elements...

READ MORE

Multifunction Phased Array Radar (MPAR): achieving Next Generation Surveillance and Weather Radar Capability

Published in:
J. Air Traffic Control, Vol. 55, No. 3, Fall 2013, pp. 40-7.

Summary

Within DOT, the FAA has initiated an effort known as the NextGen Surveillance and Weather Radar Capability (NSWRC) to analyze the need for the next generation radar replacement and assess viable implementation alternatives. One concept under analysis is multifunction radar using phased-array technology -- Multifunction Phased Array Radar or MPAR.
READ LESS

Summary

Within DOT, the FAA has initiated an effort known as the NextGen Surveillance and Weather Radar Capability (NSWRC) to analyze the need for the next generation radar replacement and assess viable implementation alternatives. One concept under analysis is multifunction radar using phased-array technology -- Multifunction Phased Array Radar or MPAR.

READ MORE

Stepped notch antenna array used as a low thermal resistance heat sink

Summary

A stepped notch antenna at Ku-band is developed to provide a thermal heat sink for active arrays. The antenna with forced air cooling provides up to 0.4 degrees C/W of thermal resistance. The antenna integration with a printed circuit board allows for high volume surface mount assembly of active devices.
READ LESS

Summary

A stepped notch antenna at Ku-band is developed to provide a thermal heat sink for active arrays. The antenna with forced air cooling provides up to 0.4 degrees C/W of thermal resistance. The antenna integration with a printed circuit board allows for high volume surface mount assembly of active devices.

READ MORE

Reconfigurable RF systems using commercially available digital capacitor arrays

Published in:
38th Annual GOMACTech Conf., 11-14 March 2013.
R&D group:

Summary

Various RF circuit blocks implemented by using commercially available MEMS digital capacitor arrays are presented for reconfigurable RF systems. The designed circuit blocks are impedance-matching network, tunable bandpass filter, and VSWR sensor. The frequency range of the designed circuits is 0.4-4GHz. The MEMS digital capacitor arrays that are employed in the designs have built-in dc-to-dc voltage converter and serial interface significantly simplifying the control circuitry. The RF circuit blocks are suitable to low-cost, high-level of integration, thanks to the commercially available parts and standard RF packaging technologies.
READ LESS

Summary

Various RF circuit blocks implemented by using commercially available MEMS digital capacitor arrays are presented for reconfigurable RF systems. The designed circuit blocks are impedance-matching network, tunable bandpass filter, and VSWR sensor. The frequency range of the designed circuits is 0.4-4GHz. The MEMS digital capacitor arrays that are employed in...

READ MORE

Improving quantum gate fidelities by using a qubit to measure microwave pulse distortions

Published in:
Phys. Rev. Lett., Vol. 110, No. 4, 24 January 2013.
Topic:
R&D group:

Summary

We present a new method for determining pulse imperfections and improving the single-gate fidelity in a superconducting qubit. By applying consecutive positive and negative pi pulses, we amplify the qubit evolution due to microwave pulse distortions, which causes the qubit state to rotate around an axis perpendicular to the intended rotation axis. Measuring these rotations as a function of pulse period allows us to reconstruct the shape of the microwave pulse arriving at the sample. Using the extracted response to predistort the input signal, we are able to reduce the average error per gate by 37%, which enables us to reach an average single-qubit gate fidelity higher than 0.998.
READ LESS

Summary

We present a new method for determining pulse imperfections and improving the single-gate fidelity in a superconducting qubit. By applying consecutive positive and negative pi pulses, we amplify the qubit evolution due to microwave pulse distortions, which causes the qubit state to rotate around an axis perpendicular to the intended...

READ MORE

Time-reversal symmetry and universal conductance fluctuations in a driven two-level system

Published in:
Phys. Rev. Lett., Vol. 110, No. 1, 2 January 2013, 016603.
Topic:
R&D group:

Summary

In the presence of time-reversal symmetry, quantum interference gives strong corrections to the electric conductivity of disordered systems. The self-interference of an electron wave function traveling time-reversed paths leads to effects such as weak localization and universal conductance fluctuations. Here, we investigate the effects of broken time-reversal symmetry in a driven artificial two-level system. Using a superconducting flux qubit, we implement scattering events as multiple Landau-Zener transitions by driving the qubit periodically back and forth through an avoided crossing. Interference between different qubit trajectories gives rise to a speckle pattern in the qubit transition rate, similar to the interference patterns created when coherent light is scattered off a disordered potential. Since the scattering events are imposed by the driving protocol, we can control the time-reversal symmetry of the system by making the drive waveform symmetric or asymmetric in time. We find that the fluctuations of the transition rate exhibit a sharp peak when the drive is time symmetric, similar to universal conductance fluctuations in electronic transport through mesoscopic systems.
READ LESS

Summary

In the presence of time-reversal symmetry, quantum interference gives strong corrections to the electric conductivity of disordered systems. The self-interference of an electron wave function traveling time-reversed paths leads to effects such as weak localization and universal conductance fluctuations. Here, we investigate the effects of broken time-reversal symmetry in a...

READ MORE

High dynamic range suppressed-bias microwave photonic links using unamplified semiconductor laser source

Published in:
AVFOP 2012: IEEE Avionics, Fiber-Optics and Photonics Tech. Conf., 11-13 September 2012, pp. 28-9.
Topic:
R&D group:

Summary

Microwave photonic (MWP) links with a low noise figure and high dynamic range are required for antenna remoting, radio-over-fiber (RoF), and other advanced applications. MWP links have recently been demonstrated with noise figures approaching 3 dB, without any electrical preamplification, by using low-noise high-power laser sources in conjunction with efficient optical intensity modulators and high-power photodetectors. An alternate approach to noise figure reduction, suitable for sub-octave links, is based on using a high-power laser source and shifting the bias point of an external optical intensity modulator to reduce the average photocurrent and suppress excess link noise. Here, we report the performance of a novel slab-coupled optical waveguide external-cavity laser (SCOWECL) in a suppressed bias MWP link. We compare the performance of this link with a suppressed-bias link using a source comprising a commercial-off-the-shelf (COTS) laser and erbium-doped fiber amplifier (EDFA) and show that MWP links built using SCOW-based emitter technology offer superior performance due to the small-form factor, high-efficiency, low-noise, and high power laser source.
READ LESS

Summary

Microwave photonic (MWP) links with a low noise figure and high dynamic range are required for antenna remoting, radio-over-fiber (RoF), and other advanced applications. MWP links have recently been demonstrated with noise figures approaching 3 dB, without any electrical preamplification, by using low-noise high-power laser sources in conjunction with efficient...

READ MORE

Nanosatellites for Earth environmental monitoring: the MicroMAS project

Summary

The Micro-sized Microwave Atmospheric Satellite (MicroMAS) is a 3U cubesat (34x10x10 cm, 4.5 kg) hosting a passive microwave spectrometer operating near the 118.75-GHz oxygen absorption line. The focus of the first MicroMAS mission (hereafter, MicroMAS-1) is to observe convective thunderstorms, tropical cyclones, and hurricanes from a near-equatorial orbit at approximately 500-km altitude. A MicroMAS flight unit is currently being developed in anticipation of a 2014 launch. A parabolic reflector is mechanically rotated as the spacecraft orbits the earth, thus directing a cross-track scanned beam with FWHM beamwidth of 2.4-degrees, yielding an approximately 20-km diameter footprint at nadir incidence from a nominal altitude of 500 km. Radiometric calibration is carried out using observations of cold space, the earth?s limb, and an internal noise diode that is weakly coupled through the RF front-end electronics. A key technology feature is the development of an ultra-compact intermediate frequency processor module for channelization, detection, and A-to-D conversion. The antenna system and RF front-end electronics are highly integrated and miniaturized. A MicroMAS-2 mission is currently being planned using a multiband spectrometer operating near 118 and 183 GHz in a sunsynchronous orbit of approximately 800-km altitude. A HyMAS- 1 (Hyperspectral Microwave Atmospheric Satellite) mission with approximately 50 channels near 118 and 183 GHz is also being planned. In this paper, the mission concept of operations will be discussed, the radiometer payload will be described, and the spacecraft subsystems (avionics, power, communications, attitude determination and control, and mechanical structures) will be summarized.
READ LESS

Summary

The Micro-sized Microwave Atmospheric Satellite (MicroMAS) is a 3U cubesat (34x10x10 cm, 4.5 kg) hosting a passive microwave spectrometer operating near the 118.75-GHz oxygen absorption line. The focus of the first MicroMAS mission (hereafter, MicroMAS-1) is to observe convective thunderstorms, tropical cyclones, and hurricanes from a near-equatorial orbit at approximately...

READ MORE