Publications

Refine Results

(Filters Applied) Clear All

Large enhancement of third-order nonlinear effects with a resonant all-dielectric metasurface

Published in:
AIP Adv., Vol. 6, No. 11, 1 November 2016, 115213.

Summary

A novel low-profile nonlinear metasurface, consisting of a single-layer of all-dielectric material, is proposed and numerically investigated by a nonlinear full-wave finite-difference time-domain (FDTD) method. The proposed metasurface is transparent for low, and opaque for high values of incident light intensity. The metasurface design is broadly applicable to enhancement of intrinsic nonlinearities of any material with a sufficiently high refractive index contrast. We illustrate the ability of this design to enhance intrinsic nonlinear absorption of a transition metal oxide, vanadium pentoxide (V2O5), with resonant metasurface elements. The complex third-order nonlinear susceptibility (x^(3)) for V2O5, representing both nonlinear refraction and absorption is considered in FDTD simulations. Our design achieves high initial transparency (>90%) for low incident light intensity. An order of magnitude decrease in the required input light intensity threshold for nonlinear response of the metasurface is observed in comparison with an unpatterend film. The proposed all-dielectric metasurface in this work is ultrathin and easy to fabricate. We envision a number of applications of this design for thin film coatings that offer protection against high-power laser radiation.
READ LESS

Summary

A novel low-profile nonlinear metasurface, consisting of a single-layer of all-dielectric material, is proposed and numerically investigated by a nonlinear full-wave finite-difference time-domain (FDTD) method. The proposed metasurface is transparent for low, and opaque for high values of incident light intensity. The metasurface design is broadly applicable to enhancement of...

READ MORE

Electrically switchable diffractive waveplates with metasurface aligned liquid crystals

Published in:
Opt. Express, Vol. 24, No. 21, 17 October 2016, 24265-24273.

Summary

Diffractive waveplates and equivalent metasurfaces provide a promising path for applications in thin film beam steering, tunable lenses, and polarization filters. However, fixed metasurfaces alone are unable to be tuned electronically. By combining metasurfaces with tunable liquid crystals, we experimentally demonstrate a single layer device capable of electrically switching a diffractive waveplate design at a measured peak diffraction efficiency of 35%, and a minimum switching voltage of 10V. Furthermore, the nano-scale metasurface aligned liquid crystals are largely independent of variations in wavelength and temperature. We also present a computational analysis of the efficiency limits of liquid crystal based diffractive waveplates, and compare this analysis to experimental measurements.
READ LESS

Summary

Diffractive waveplates and equivalent metasurfaces provide a promising path for applications in thin film beam steering, tunable lenses, and polarization filters. However, fixed metasurfaces alone are unable to be tuned electronically. By combining metasurfaces with tunable liquid crystals, we experimentally demonstrate a single layer device capable of electrically switching a...

READ MORE

Effects of humidity and surface on photoalignment of brilliant yellow

Summary

Controlling and optimising the alignment of liquid crystals is a crucial process for display application. Here, we investigate the effects of humidity and surface types on photoalignment of an azo-dye brilliant yellow (BY). Specifically, the effect of humidity on the photoalignment of BY was studied at the stage of substrate storage before coating, during the spin-coating process, between film coating and exposure, and after exposure. Surprising results are the drastic effect of humidity during the spin-coating process, the humidity annealing to increase the order of the BY layer after exposure and the dry annealing to stabilise the layer. Our results are interpreted in terms of the effect of water on the aggregation of BY. The type of surface studied had minimal effects. Thin BY films (about 3 nm thickness) were sensitive to the hydrophilicity of the surface while thick BY films (about 30 nm thickness) were not affected by changing the surface. The results of this paper allow for the optimisation of the BY photoalignment for liquid crystal display application as well as a better understanding of the BY photoalignment mechanism.
READ LESS

Summary

Controlling and optimising the alignment of liquid crystals is a crucial process for display application. Here, we investigate the effects of humidity and surface types on photoalignment of an azo-dye brilliant yellow (BY). Specifically, the effect of humidity on the photoalignment of BY was studied at the stage of substrate...

READ MORE

Use of Photoacoustic Excitation and Laser Vibrometry to Remotely Detect Trace Explosives

Summary

In this paper, we examine a laser-based approach to remotely initiate, measure, and differentiate acoustic and vibrational emissions from trace quantities of explosive materials against their environment. Using a pulsed ultraviolet laser (266 nm), we induce a significant (>100  Pa) photoacoustic response from small quantities of military-grade explosives. The photoacoustic signal, with frequencies predominantly between 100 and 500 kHz, is detected remotely via a wideband laser Doppler vibrometer. This two-laser system can be used to rapidly detect and discriminate explosives from ordinary background materials, which have significantly weaker photoacoustic response. A 100  ng/cm2 limit of detection is estimated. Photoablation is proposed as the dominant mechanism for the large photoacoustic signals generated by explosives.
READ LESS

Summary

In this paper, we examine a laser-based approach to remotely initiate, measure, and differentiate acoustic and vibrational emissions from trace quantities of explosive materials against their environment. Using a pulsed ultraviolet laser (266 nm), we induce a significant (>100  Pa) photoacoustic response from small quantities of military-grade explosives. The photoacoustic signal...

READ MORE

Liquid crystal uncooled thermal imager development

Published in:
SPIE, Vol. 9974, Infrared Sensors, Devices, and Applications VI, 28 August 2016.

Summary

An uncooled thermal imager is being developed based on a liquid crystal (LC) transducer. Without any electrical connections, the LC transducer pixels change the long-wavelength infrared (LWIR) scene directly into a visible image as opposed to an electric signal in microbolometers. The objectives are to develop an imager technology scalable to large formats (tens of megapixels) while maintaining or improving the noise equivalent temperature difference (NETD) compared to microbolometers. The present work is demonstrating that the LCs have the required performance (sensitivity, dynamic range, speed, etc.) to enable a more flexible uncooled imager. Utilizing 200-mm wafers, a process has been developed and arrays have been fabricated using aligned LCs confined in 20-20-um cavities elevated on thermal legs. Detectors have been successfully fabricated on both silicon and fused silica wafers using less than 10 photolithographic mask steps. A breadboard camera system has been assembled to test the imagers. Various sensor configurations are described along with advantages and disadvantages of component arrangements.
READ LESS

Summary

An uncooled thermal imager is being developed based on a liquid crystal (LC) transducer. Without any electrical connections, the LC transducer pixels change the long-wavelength infrared (LWIR) scene directly into a visible image as opposed to an electric signal in microbolometers. The objectives are to develop an imager technology scalable...

READ MORE

Broadband Optical Switch Based on Liquid Crystal Dynamic Scattering

Published in:
Optics Express, vol. 24, no. 13

Summary

This work demonstrates a novel broadband optical switch, based on dynamic-scattering effect in liquid crystals (LCs). Dynamic-scattering-mode technology was developed for display applications over four decades ago, but was displaced in favor of the twisted-nematic LCs. However, with the recent development of more stable LCs, dynamic scattering provides advantages over other technologies for optical switching. We demonstrate broadband polarization-insensitive attenuation of light directly passing thought the cell by 4 to 5 orders of magnitude at 633 nm. The attenuation is accomplished by light scattering to higher angles. Switching times of 150 μs to 10% transmission have been demonstrated. No degradation of devices is found after hundreds of switching cycles. The light-rejection mechanism is due to scattering, induced by disruption of LC director orientation with dopant ion motion with an applied electric field. Angular dependence of scattering is characterized as a function of bias voltage.
READ LESS

Summary

This work demonstrates a novel broadband optical switch, based on dynamic-scattering effect in liquid crystals (LCs). Dynamic-scattering-mode technology was developed for display applications over four decades ago, but was displaced in favor of the twisted-nematic LCs. However, with the recent development of more stable LCs, dynamic scattering provides advantages over...

READ MORE

A scalable fabrication process for liquid crystal-based uncooled thermal imagers

Published in:
J. Microelectromech. Syst., Vol. 25, No. 3. June 2016, pp. 479-88.

Summary

A novel sensor is being developed for a new uncooled imager technology that is scalable to large formats (tens of megapixels), which is greater than what is achieved by commercial microbolometer arrays. In this novel sensor, a liquid-crystal transducer is used to change a long-wavelength infrared scene into a visible image that can be detected using a conventional visible imager. This approach has the potential for making a more flexible thermal sensor that can be optimized for a variety of applications. In this paper, we describe the microfabrication processes required to create an array of sealed thermally isolated micro-cavities filled with liquid crystals to be used for an uncooled thermal imager. Experimental results from the fabricated arrays will also be discussed.
READ LESS

Summary

A novel sensor is being developed for a new uncooled imager technology that is scalable to large formats (tens of megapixels), which is greater than what is achieved by commercial microbolometer arrays. In this novel sensor, a liquid-crystal transducer is used to change a long-wavelength infrared scene into a visible...

READ MORE

Polymer dielectrics for 3D-printed RF devices in the Ka band

Summary

Direct-write printing allows the fabrication of centimeter-wave radio devices. Most polymer dielectric polymer materials become lossy at frequencies above 10 GHz. Presented here is a printable dielectric material with low loss in the K a band (26.5–40 GHz). This process allows the fabrication of resonator filter devices and a radio antenna.
READ LESS

Summary

Direct-write printing allows the fabrication of centimeter-wave radio devices. Most polymer dielectric polymer materials become lossy at frequencies above 10 GHz. Presented here is a printable dielectric material with low loss in the K a band (26.5–40 GHz). This process allows the fabrication of resonator filter devices and a radio...

READ MORE

Wafer-scale aluminum nanoplasmonic resonators with optimized metal deposition

Published in:
ACS Photonics, Vol. 3, No. 5, 18 May 2016, pp. 796-805.

Summary

Spectroscopic ellipsometry is demonstrated to be an effective technique for assessing the quality of plasmonic resonances within aluminum nanostructures deposited with multiple techniques. The resonance quality of nanoplasmonic aluminum arrays is shown to be strongly dependent on the method of aluminum deposition. Three-layer metal-dielectric-metal nanopillar arrays were fabricated in a complementary metal-oxide semiconductor (CMOS) facility, with the arrays of nanopillars separated from a continuous metal underlayer by a thin dielectric spacer, to provide optimum field enhancement. Nanostructures patterned in optimized aluminum, which had been deposited with a high temperature sputtering process followed by chemical mechanical planarization, display different resonance and depolarization behavior than nanostructures deposited by the more conventional evaporation process. Full plasmonic band diagrams are mapped over a wide range of incidence angles and wavelengths using spectroscopic ellipsometry, and compared for aluminum nanostructures fabricated with two methods. The resonators fabricated from optimized aluminum exhibit a narrower bandwidth of both plasmonic resonance and depolarization parameters, indicating a higher quality resonance due to a stronger localization of the electric field. The optimized wafer-scale aluminum plasmonics fabrication should provide a pathway towards better quality devices for sensing and light detection in the ultraviolet and blue parts of the spectrum.
READ LESS

Summary

Spectroscopic ellipsometry is demonstrated to be an effective technique for assessing the quality of plasmonic resonances within aluminum nanostructures deposited with multiple techniques. The resonance quality of nanoplasmonic aluminum arrays is shown to be strongly dependent on the method of aluminum deposition. Three-layer metal-dielectric-metal nanopillar arrays were fabricated in a...

READ MORE

Microhydraulic electrowetting actuators

Published in:
J. Microelectromech. Syst., Vol. 25, No. 2, April 2016, pp. 394-400.

Summary

The conversion of electrical to mechanical power on a sub-centimeter scale is a key technology in many microsystems and energy harvesting devices. In this paper, we present a type of a capacitive energy conversion device that uses capillary pressure and electrowetting to reversibly convert electrical power to hydraulic power. These microhydraulic actuators use a high surface-to-volume ratio to deliver high power at a relatively low voltage with an energy conversion efficiency of over 65%. The capillary pressure generated grows linearly with shrinking capillary diameter, as does the frequency of actuation. We present the pressure, frequency, and power scaling properties of these actuators and demonstrate that power density scales up as the inverse capillary diameter squared, leading to high-efficiency actuators with a strength density exceeding biological muscle. Two potential applications for microhydraulics are also demonstrated: soft-microrobotics and energy harvesting.
READ LESS

Summary

The conversion of electrical to mechanical power on a sub-centimeter scale is a key technology in many microsystems and energy harvesting devices. In this paper, we present a type of a capacitive energy conversion device that uses capillary pressure and electrowetting to reversibly convert electrical power to hydraulic power. These...

READ MORE