Publications

Refine Results

(Filters Applied) Clear All

High performance, 3D-printable dielectric nanocomposites for millimeter wave devices

Summary

The creation of millimeter wave, 3D-printable dielectric nanocomposite is demonstrated. Alumina nanoparticles were combined with styrenic block copolymers and solvent to create shear thinning, viscoelastic inks that are printable at room temperature. Particle loadings of up to 41 vol % were achieved. Upon being dried, the highest-performing of these materials has a permittivity of 4.61 and a loss tangent of 0.00298 in the Ka band (26.5-40 GHz), a combination not previously demonstrated for 3D printing. These nanocomposite materials were used to print a simple resonator device with predictable pass-band features.
READ LESS

Summary

The creation of millimeter wave, 3D-printable dielectric nanocomposite is demonstrated. Alumina nanoparticles were combined with styrenic block copolymers and solvent to create shear thinning, viscoelastic inks that are printable at room temperature. Particle loadings of up to 41 vol % were achieved. Upon being dried, the highest-performing of these materials...

READ MORE

Polymer dielectrics for 3D-printed RF devices in the Ka band

Summary

Direct-write printing allows the fabrication of centimeter-wave radio devices. Most polymer dielectric polymer materials become lossy at frequencies above 10 GHz. Presented here is a printable dielectric material with low loss in the K a band (26.5–40 GHz). This process allows the fabrication of resonator filter devices and a radio antenna.
READ LESS

Summary

Direct-write printing allows the fabrication of centimeter-wave radio devices. Most polymer dielectric polymer materials become lossy at frequencies above 10 GHz. Presented here is a printable dielectric material with low loss in the K a band (26.5–40 GHz). This process allows the fabrication of resonator filter devices and a radio...

READ MORE

Showing Results

1-2 of 2