Publications

Refine Results

(Filters Applied) Clear All

Leveraging linear algebra to count and enumerate simple subgraphs

Published in:
2020 IEEE High Performance Extreme Computing Conf., HPEC, 22-24 September 2020.

Summary

Even though subgraph counting and subgraph matching are well-known NP-Hard problems, they are foundational building blocks for many scientific and commercial applications. In order to analyze graphs that contain millions to billions of edges, distributed systems can provide computational scalability through search parallelization. One recent approach for exposing graph algorithm parallelization is through a linear algebra formulation and the use of the matrix multiply operation, which conceptually is equivalent to a massively parallel graph traversal. This approach has several benefits, including 1) a mathematically-rigorous foundation, and 2) ability to leverage specialized linear algebra accelerators and high-performance libraries. In this paper, we explore and define a linear algebra methodology for performing exact subgraph counting and matching for 4-vertex subgraphs excluding the clique. Matches on these simple subgraphs can be joined as components for a larger subgraph. With thorough analysis, we demonstrate that the linear algebra formulation leverages path aggregation which allows it to be up 2x to 5x more efficient in traversing the search space and compressing the results as compared to tree-based subgraph matching techniques.
READ LESS

Summary

Even though subgraph counting and subgraph matching are well-known NP-Hard problems, they are foundational building blocks for many scientific and commercial applications. In order to analyze graphs that contain millions to billions of edges, distributed systems can provide computational scalability through search parallelization. One recent approach for exposing graph algorithm...

READ MORE

Towards a distributed framework for multi-agent reinforcement learning research

Summary

Some of the most important publications in deep reinforcement learning over the last few years have been fueled by access to massive amounts of computation through large scale distributed systems. The success of these approaches in achieving human-expert level performance on several complex video-game environments has motivated further exploration into the limits of these approaches as computation increases. In this paper, we present a distributed RL training framework designed for super computing infrastructures such as the MIT SuperCloud. We review a collection of challenging learning environments—such as Google Research Football, StarCraft II, and Multi-Agent Mujoco— which are at the frontier of reinforcement learning research. We provide results on these environments that illustrate the current state of the field on these problems. Finally, we also quantify and discuss the computational requirements needed for performing RL research by enumerating all experiments performed on these environments.
READ LESS

Summary

Some of the most important publications in deep reinforcement learning over the last few years have been fueled by access to massive amounts of computation through large scale distributed systems. The success of these approaches in achieving human-expert level performance on several complex video-game environments has motivated further exploration into...

READ MORE

Sensorimotor conflict tests in an immersive virtual environment reveal subclinical impairments in mild traumatic brain injury

Summary

Current clinical tests lack the sensitivity needed for detecting subtle balance impairments associated with mild traumatic brain injury (mTBI). Patient-reported symptoms can be significant and have a huge impact on daily life, but impairments may remain undetected or poorly quantified using clinical measures. Our central hypothesis was that provocative sensorimotor perturbations, delivered in a highly instrumented, immersive virtual environment, would challenge sensory subsystems recruited for balance through conflicting multi-sensory evidence, and therefore reveal that not all subsystems are performing optimally. The results show that, as compared to standard clinical tests, the provocative perturbations illuminate balance impairments in subjects who have had mild traumatic brain injuries. Perturbations delivered while subjects were walking provided greater discriminability (average accuracy ≈ 0.90) than those delivered during standing (average accuracy ≈ 0.65) between mTBI subjects and healthy controls. Of the categories of features extracted to characterize balance, the lower limb accelerometry-based metrics proved to be most informative. Further, in response to perturbations, subjects with an mTBI utilized hip strategies more than ankle strategies to prevent loss of balance and also showed less variability in gait patterns. We have shown that sensorimotor conflicts illuminate otherwise-hidden balance impairments, which can be used to increase the sensitivity of current clinical procedures. This augmentation is vital in order to robustly detect the presence of balance impairments after mTBI and potentially define a phenotype of balance dysfunction that enhances risk of injury.
READ LESS

Summary

Current clinical tests lack the sensitivity needed for detecting subtle balance impairments associated with mild traumatic brain injury (mTBI). Patient-reported symptoms can be significant and have a huge impact on daily life, but impairments may remain undetected or poorly quantified using clinical measures. Our central hypothesis was that provocative sensorimotor...

READ MORE

A framework to improve evaluation of novel decision support tools

Published in:
11th Intl. Conf. on Applied Human Factors and Ergonomics, AHFE, 16-20 July 2020.

Summary

Organizations that introduce new technology into an operational environment seek to improve some aspect of task conduct through technology use. Many organizations rely on user acceptance measures to gauge technology viability, though misinterpretation of user feedback can lead organizations to accept non-beneficial technology or reject potentially beneficial technology. Additionally, teams that misinterpret user feedback can spend time and effort on tasks that do not improve either user acceptance or operational task conduct. This paper presents a framework developed through efforts to transition technology to the U.S. Transportation Command (USTRANSCOM). The framework formalizes aspects of user experience with technology to guide organization and development team research and assessments. The case study is examined through the lens of the framework to illustrate how user-focused methodologies can be employed by development teams to systematically improve development of new technology, user acceptance of new technology, and assessments of technology viability.
READ LESS

Summary

Organizations that introduce new technology into an operational environment seek to improve some aspect of task conduct through technology use. Many organizations rely on user acceptance measures to gauge technology viability, though misinterpretation of user feedback can lead organizations to accept non-beneficial technology or reject potentially beneficial technology. Additionally, teams...

READ MORE

Predicting cognitive load and operational performance in a simulated marksmanship task

Summary

Modern operational environments can place significant demands on a service member's cognitive resources, increasing the risk of errors or mishaps due to overburden. The ability to monitor cognitive burden and associated performance within operational environments is critical to improving mission readiness. As a key step toward a field-ready system, we developed a simulated marksmanship scenario with an embedded working memory task in an immersive virtual reality environment. As participants performed the marksmanship task, they were instructed to remember numbered targets and recall the sequence of those targets at the end of the trial. Low and high cognitive load conditions were defined as the recall of three- and six-digit strings, respectively. Physiological and behavioral signals recorded included speech, heart rate, breathing rate, and body movement. These features were input into a random forest classifier that significantly discriminated between the low- and high-cognitive load conditions (AUC=0.94). Behavioral features of gait were the most informative, followed by features of speech. We also showed the capability to predict performance on the digit recall (AUC = 0.71) and marksmanship (AUC = 0.58) tasks. The experimental framework can be leveraged in future studies to quantify the interaction of other types of stressors and their impact on operational cognitive and physical performance.
READ LESS

Summary

Modern operational environments can place significant demands on a service member's cognitive resources, increasing the risk of errors or mishaps due to overburden. The ability to monitor cognitive burden and associated performance within operational environments is critical to improving mission readiness. As a key step toward a field-ready system, we...

READ MORE

A workflow for non-linear load parameter estimation using a power-hardware-in-the-loop experimental testbed

Published in:
2020 IEEE Applied Power Electronics Conf. and Expo., APEC, 15-19 March 2020.

Summary

Low-inertia microgrids may easily have a single load which can make up most of the total load, thereby greatly affecting stability and power quality. Instead of static load models, dynamic load models are presented here for constant current loads (CILs) and constant power loads (CPLs). Next, a flexible Power-Hardware-in-the-Loop (PHiL) testbed is employed for the experiments in this work. The PHiL testbed consists of a real-time computer working with a power amplifier in order to perturb its voltage and frequency. A connected load serves as the device under test (DUT). Using the captured experimental data as a reference, a parameter estimation algorithm is then implemented. The resulting parameter estimates are used to define simulation models. Both the CIL and CPL dynamic models are simulated to produce waveforms that closely resemble experimental waveforms. The algorithm, referred to as an enhanced monte carlo algorithm (EMCA), is explained in this work. Finally, the EMCA's resulting parameter estimates are presented.
READ LESS

Summary

Low-inertia microgrids may easily have a single load which can make up most of the total load, thereby greatly affecting stability and power quality. Instead of static load models, dynamic load models are presented here for constant current loads (CILs) and constant power loads (CPLs). Next, a flexible Power-Hardware-in-the-Loop (PHiL)...

READ MORE

Augmented Annotation Phase 3

Author:
Published in:
MIT Lincoln Laboratory Report TR-1248

Summary

Automated visual object detection is an important capability in reducing the burden on human operators in many DoD applications. To train modern deep learning algorithms to recognize desired objects, the algorithms must be "fed" more than 1000 labeled images (for 55%–85% accuracy according to project Maven - Oct 2017 O6, Working Group slide 27) of each particular object. The task of labeling training data for use in machine learning algorithms is human intensive, requires special software, and takes a great deal of time. Estimates from ImageNet, a widely used and publicly available visual object detection dataset, indicate that humans generated four annotations per minute in the overall production of ImageNet annotations. DoD's need is to reduce direct object-by-object human labeling particularly in the video domain where data quantity can be significant. The Augmented Annotations System addresses this need by leveraging a small amount of human annotation effort to propagate human initiated annotations through video to build an initial labeled dataset for training an object detector, and utilizing an automated object detector in an iterative loop to assist humans in pre-annotating new datasets.
READ LESS

Summary

Automated visual object detection is an important capability in reducing the burden on human operators in many DoD applications. To train modern deep learning algorithms to recognize desired objects, the algorithms must be "fed" more than 1000 labeled images (for 55%–85% accuracy according to project Maven - Oct 2017 O6...

READ MORE

Toward an autonomous aerial survey and planning system for humanitarian aid and disaster response

Summary

In this paper we propose an integrated system concept for autonomously surveying and planning emergency response for areas impacted by natural disasters. Referred to as AASAPS-HADR, this system is composed of a network of ground stations and autonomous aerial vehicles interconnected by an ad hoc emergency communication network. The system objectives are three-fold: to provide situational awareness of the evolving disaster event, to generate dispatch and routing plans for emergency vehicles, and to provide continuous communication networks which augment pre-existing communication infrastructure that may have been damaged or destroyed. Lacking development in previous literature, we give particular emphasis to the situational awareness objective of disaster response by proposing an autonomous aerial survey that is tasked with assessing damage to existing road networks, detecting and locating human victims, and providing a cursory assessment of casualty types that can be used to inform medical response priorities. In this paper we provide a high-level system design concept, identify existing AI perception and planning algorithms that most closely suit our purposes as well as technology gaps within those algorithms, and provide initial experimental results for non-contact health monitoring using real-time pose recognition algorithms running on a Nvidia Jetson TX2 mounted on board a quadrotor UAV. Finally we provide technology development recommendations for future phases of the AASAPS-HADR system.
READ LESS

Summary

In this paper we propose an integrated system concept for autonomously surveying and planning emergency response for areas impacted by natural disasters. Referred to as AASAPS-HADR, this system is composed of a network of ground stations and autonomous aerial vehicles interconnected by an ad hoc emergency communication network. The system...

READ MORE

Unified value-based feedback, optimization and risk management in complex electric energy systems

Author:
Published in:
Optim Eng 21, 427–483 (2020)
R&D group:

Summary

The ideas in this paper are motivated by an increased need for systematic data-enabled resource management of large-scale electric energy systems. The basic control objective is to manage uncertain disturbances, power imbalances in particular, by optimizing available power resources. To that end, we start with a centralized optimal control problem formulation of system-level performance objective subject to complex interconnection constraints and constraints representing highly heterogeneous internal dynamics of system components. To manage spatial complexity, an inherent multi-layered structure is utilized by modeling interconnection constraints in terms of unifed power variables and their dynamics. Similarly, the internal dynamics of components and sub-systems (modules), including their primary automated feedback control, is modeled so that their input–output characterization is also expressed in terms of power variables. This representation is shown to be key to managing the multi-spatial complexity of the problem. In this unifying energy/ power state space, the system constraints are all fundamentally convex, resulting in the convex dynamic optimization problem, for typically utilized quadratic cost functions. Based on this, an interactive multi-layered modeling and control method is introduced. While the approach is fundamentally based on the primal–dual decomposition of the centralized problem, this is formulated for the frst time for the couple real-reactive power problem. It is also is proposed for the frst time to utilize sensitivity functions of distributed agents for solving the primal distributed problem. Iterative communication complexity typically required for convergence of pointwise information exchange is replaced by the embedded distributed optimization by the modules when creating these functions. A theoretical proof of the convergence claim is given. Notably, the inherent multi-temporal complexity is managed by performing model predictive control (MPC)-based decision making when solving distributed primal problems. The formulation enables distributed decision-makers to value uncertainties and related risks according to their preferences. Ultimately, the distributed decision making results in creating a bid function to be used at the coordinating market-clearing level. The optimization approach in this paper provides a theoretical foundation for next-generation Supervisory Control and Data Acquisition (SCADA) in support of a Dynamic Monitoring and Decision Systems (DyMonDS) for a multi-layered interactive market implementation in which the grid users follow their sub-objectives and the higher layers coordinate interconnected sub-systems and the high-level system objectives. This forms a theoretically sound basis for designing IT-enabled protocols for secure operations, planning, and markets.
READ LESS

Summary

The ideas in this paper are motivated by an increased need for systematic data-enabled resource management of large-scale electric energy systems. The basic control objective is to manage uncertain disturbances, power imbalances in particular, by optimizing available power resources. To that end, we start with a centralized optimal control problem...

READ MORE

Modeling and distributed control of microgrids: a negative feedback approach

Author:
Published in:
2019 IEEE 58th Conf. on Decision and Control, CDC, 11-13 December 2019.

Summary

In this paper, we first show how general microgrid can be modeled as a negative feedback configuration comprising two subsystems. The first subsystem is the interconnected microgrid grid which is affected through negative feedback by the second subsystem consisting of all single-port components. This is modeled by transforming physical state variables into energy state variables and by systematically defining input and output of system components in this transformed state space. We next draw on the fact that for this basic feedback configuration there exist several types of conditions regarding subsystem properties which ensure overall system properties. In particular, we utilize dissipativity theory to propose a subsystem nonlinear control design for heterogeneous resource components comprising microgrids so that they jointly result in a closed-loop feasible and stable dynamical system for given ranges of system disturbances.
READ LESS

Summary

In this paper, we first show how general microgrid can be modeled as a negative feedback configuration comprising two subsystems. The first subsystem is the interconnected microgrid grid which is affected through negative feedback by the second subsystem consisting of all single-port components. This is modeled by transforming physical state...

READ MORE