Publications
A hybrid algorithm for parameter estimation (HAPE) for dynamic constant power loads
Summary
Summary
Low-inertia microgrids may easily have a single load which can make up most of the total load, thereby greatly affecting stability and power quality. Instead of a static load model, a dynamic constant power load (DCPL) model is considered here. Next, a hybrid algorithm for parameter estimation (HAPE) is introduced...
Toward distributed control for reconfigurable robust microgrids
Summary
Summary
Microgrids have been seen as a good solution to providing power to forward-deployed military forces. However, compatibility, robustness and stability of current solutions are often questionable. To overcome some of these problems, we first propose a theoretically-sound modeling method which defines common microgrid component interfaces using power and rate of...
A workflow for non-linear load parameter estimation using a power-hardware-in-the-loop experimental testbed
Summary
Summary
Low-inertia microgrids may easily have a single load which can make up most of the total load, thereby greatly affecting stability and power quality. Instead of static load models, dynamic load models are presented here for constant current loads (CILs) and constant power loads (CPLs). Next, a flexible Power-Hardware-in-the-Loop (PHiL)...
High performance computing techniques with power systems simulations
Summary
Summary
Small electrical networks (i.e., microgrids) and machine models (synchronous generators, induction motors) can be simulated fairly easily, on sequential processes. However, running a large simulation on a single process becomes infeasible because of complexity and timing issues. Scalability becomes an increasingly important issue for larger simulations, and the platform for...