Publications

Refine Results

(Filters Applied) Clear All

Human balance models optimized using a large-scale, parallel architecture with applications to mild traumatic brain injury

Published in:
2020 IEEE High Performance Extreme Computing Conf., HPEC, 22-24 September 2020.

Summary

Static and dynamic balance are frequently disrupted through brain injuries. The impairment can be complex and for mild traumatic brain injury (mTBI) can be undetectable by standard clinical tests. Therefore, neurologically relevant modeling approaches are needed for detection and inference of mechanisms of injury. The current work presents models of static and dynamic balance that have a high degree of correspondence. Emphasizing structural similarity between the domains facilitates development of both. Furthermore, particular attention is paid to components of sensory feedback and sensory integration to ground mechanisms in neurobiology. Models are adapted to fit experimentally collected data from 10 healthy control volunteers and 11 mild traumatic brain injury volunteers. Through an analysis by synthesis approach whose implementation was made possible by a state-of-the-art high performance computing system, we derived an interpretable, model based feature set that could classify mTBI and controls in a static balance task with an ROC AUC of 0.72.
READ LESS

Summary

Static and dynamic balance are frequently disrupted through brain injuries. The impairment can be complex and for mild traumatic brain injury (mTBI) can be undetectable by standard clinical tests. Therefore, neurologically relevant modeling approaches are needed for detection and inference of mechanisms of injury. The current work presents models of...

READ MORE

Sensorimotor conflict tests in an immersive virtual environment reveal subclinical impairments in mild traumatic brain injury

Summary

Current clinical tests lack the sensitivity needed for detecting subtle balance impairments associated with mild traumatic brain injury (mTBI). Patient-reported symptoms can be significant and have a huge impact on daily life, but impairments may remain undetected or poorly quantified using clinical measures. Our central hypothesis was that provocative sensorimotor perturbations, delivered in a highly instrumented, immersive virtual environment, would challenge sensory subsystems recruited for balance through conflicting multi-sensory evidence, and therefore reveal that not all subsystems are performing optimally. The results show that, as compared to standard clinical tests, the provocative perturbations illuminate balance impairments in subjects who have had mild traumatic brain injuries. Perturbations delivered while subjects were walking provided greater discriminability (average accuracy ≈ 0.90) than those delivered during standing (average accuracy ≈ 0.65) between mTBI subjects and healthy controls. Of the categories of features extracted to characterize balance, the lower limb accelerometry-based metrics proved to be most informative. Further, in response to perturbations, subjects with an mTBI utilized hip strategies more than ankle strategies to prevent loss of balance and also showed less variability in gait patterns. We have shown that sensorimotor conflicts illuminate otherwise-hidden balance impairments, which can be used to increase the sensitivity of current clinical procedures. This augmentation is vital in order to robustly detect the presence of balance impairments after mTBI and potentially define a phenotype of balance dysfunction that enhances risk of injury.
READ LESS

Summary

Current clinical tests lack the sensitivity needed for detecting subtle balance impairments associated with mild traumatic brain injury (mTBI). Patient-reported symptoms can be significant and have a huge impact on daily life, but impairments may remain undetected or poorly quantified using clinical measures. Our central hypothesis was that provocative sensorimotor...

READ MORE

Comparison of two-talker attention decoding from EEG with nonlinear neural networks and linear methods

Summary

Auditory attention decoding (AAD) through a brain-computer interface has had a flowering of developments since it was first introduced by Mesgarani and Chang (2012) using electrocorticograph recordings. AAD has been pursued for its potential application to hearing-aid design in which an attention-guided algorithm selects, from multiple competing acoustic sources, which should be enhanced for the listener and which should be suppressed. Traditionally, researchers have separated the AAD problem into two stages: reconstruction of a representation of the attended audio from neural signals, followed by determining the similarity between the candidate audio streams and the reconstruction. Here, we compare the traditional two-stage approach with a novel neural-network architecture that subsumes the explicit similarity step. We compare this new architecture against linear and non-linear (neural-network) baselines using both wet and dry electroencephalogram (EEG) systems. Our results indicate that the new architecture outperforms the baseline linear stimulus-reconstruction method, improving decoding accuracy from 66% to 81% using wet EEG and from 59% to 87% for dry EEG. Also of note was the finding that the dry EEG system can deliver comparable or even better results than the wet, despite the latter having one third as many EEG channels as the former. The 11-subject, wet-electrode AAD dataset for two competing, co-located talkers, the 11-subject, dry-electrode AAD dataset, and our software are available for further validation, experimentation, and modification.
READ LESS

Summary

Auditory attention decoding (AAD) through a brain-computer interface has had a flowering of developments since it was first introduced by Mesgarani and Chang (2012) using electrocorticograph recordings. AAD has been pursued for its potential application to hearing-aid design in which an attention-guided algorithm selects, from multiple competing acoustic sources, which...

READ MORE

Showing Results

1-3 of 3