Publications

Refine Results

(Filters Applied) Clear All

Risk-based modeling to support NextGen concept assessment and validation

Published in:
MIT Lincoln Laboratory Report ATC-405
Topic:

Summary

This report provides a brief review of major risk-based modeling (RBM) approaches, with particular emphasis on how these tools can be applied during initial Next Generation Air Transportation System (NextGen) concept development and how their use can be validated. Effective safety analysis should play a role even during a new system's concept definition and development. Elements of NextGen are currently progressing through these early phases. NextGen will increasingly rely on integrating multiple systems and information together to enable improved efficiency, safety, and reduced environmental impact. Ensuring that such complex interconnected systems are developed to meet safety goals requires corresponding advances in RBM and safety assessment approaches. This report does not cover the more detailed safety analyses that must be applied to mature system concepts. Rather, the focus is on approaches for hazard identification, scoping, and coarse risk estimation for systems in the early conceptual development stage, when details on the design and operation of the system have yet to be resolved. Risk models applied is this constrained context cannot be expected to provide the same complete, quantitative results as they do for mature systems. Following a review of prior models, this report continues with recommendations for RBM development, application, validation, and coordination between NextGen efforts. Also, a discussion on safety and concept development is provided.
READ LESS

Summary

This report provides a brief review of major risk-based modeling (RBM) approaches, with particular emphasis on how these tools can be applied during initial Next Generation Air Transportation System (NextGen) concept development and how their use can be validated. Effective safety analysis should play a role even during a new...

READ MORE

Analytical workload model for estimating en route sector capacity in convective weather

Published in:
9th USA/Europe Air Traffic Management Research and Development Sem., ATM 2011, 14-17 June 2011.

Summary

We have extended an analytical workload model for estimating en route sector capacity to include the impact of convective weather. We use historical weather avoidance data to characterize weather blockage, which affects the sector workload in three ways: (1) Increase in the conflict resolution task rate via reduction in available airspace, (2) increase in the recurring task load through the rerouting of aircraft around weather, and (3) increase in the inter-sector coordination rate via reduction in the mean sector transit time. Application of the extended model to observed and forecast data shows promise for future use in network flow models.
READ LESS

Summary

We have extended an analytical workload model for estimating en route sector capacity to include the impact of convective weather. We use historical weather avoidance data to characterize weather blockage, which affects the sector workload in three ways: (1) Increase in the conflict resolution task rate via reduction in available...

READ MORE

A statistical learning approach to the modeling of aircraft taxi time

Published in:
29th Digital Avionics Systems Conf., 3 October 2010.

Summary

Modeling aircraft taxi operations is an important element in understanding current airport performance and where opportunities may lie for improvements. A statistical learning approach to modeling aircraft taxi time is presented in this paper. This approach allows efficient identification of relatively simple and easily interpretable models of aircraft taxi time, which are shown to yield remarkably accurate predictions when tested on actual data.
READ LESS

Summary

Modeling aircraft taxi operations is an important element in understanding current airport performance and where opportunities may lie for improvements. A statistical learning approach to modeling aircraft taxi time is presented in this paper. This approach allows efficient identification of relatively simple and easily interpretable models of aircraft taxi time...

READ MORE

Predictive modeling of forecast uncertainty in the Route Availability Planning Tool (RAPT)

Published in:
2010 Intl. Conf. on Scientific Computing, CSC, 12-15 July 2010.

Summary

MIT Lincoln Laboratory has developed the Route Availability Planning Tool (RAPT), which provides automated convective weather guidance to air traffic managers of the NYC metro region. Prior studies of RAPT have shown high-accuracy guidance from forecast weather, but further refinements to prevent forecast misclassification is still desirable. An attribute set of highly correlated predictors for forecast misclassification is identified. Using this attribute set, a variety of prediction models for forecast misclassification are generated and evaluated. Rule-based models, decision trees, multi-layer perceptrons, and Bayesian prediction model techniques are used. Filtering, resampling, and attribute selection methods are applied to refine model generation. Our results show promising accuracy rates for multi-layer perceptrons trained on full attribute sets.
READ LESS

Summary

MIT Lincoln Laboratory has developed the Route Availability Planning Tool (RAPT), which provides automated convective weather guidance to air traffic managers of the NYC metro region. Prior studies of RAPT have shown high-accuracy guidance from forecast weather, but further refinements to prevent forecast misclassification is still desirable. An attribute set...

READ MORE

Correlated encounter model for cooperative aircraft in the National Airspace System, version 1.0

Published in:
MIT Lincoln Laboratory Report ATC-344

Summary

This document describes a new cooperative aircraft encounter model for the National Airspace System (NAS). The model is used to generate random close encounters between transponder-equipped (cooperative) aircraft in fast-time Monte Carlo simulations to evaluate collision avoidance system concepts. An extensive set of radar data from across the United States, including more than 120 sensors and collected over a period of nine months, was used to build the statistical relationships in the model to ensure that the encounters that are generated are representative of actual events in the airspace.
READ LESS

Summary

This document describes a new cooperative aircraft encounter model for the National Airspace System (NAS). The model is used to generate random close encounters between transponder-equipped (cooperative) aircraft in fast-time Monte Carlo simulations to evaluate collision avoidance system concepts. An extensive set of radar data from across the United States...

READ MORE

Comparing convective weather avoidance models and aircraft-based data

Published in:
89th ARAM Special Symp., 4 August 2008.

Summary

The Convective Weather Avoidance Model (CWAM), developed in collaboration with NASA, translates convective weather information into a Weather Avoidance Field (WAF), to determine if pilots will route around convective regions. The WAF provides an estimate of the probability of pilot deviation around convective weather in en route airspace as a function of time, horizontal location, and flight altitude [1][2]. The results of the WAF can used to create reroutes around regions of convective weather where pilots are more likely to deviate. If reliable WAF information is provided to the cockpit and ground, pilot decisions may become more predictable, simplifying the task of air traffic control in convective weather. The improvement and validation of CWAM requires inference of pilot intent from flight trajectory data, which is challenging. The process currently involves laborious human review of the results of automated deviation detection algorithms. Both previous CWAM studies and a recent validation study [3] illustrate the difficulties and limitations of attempting to infer pilot intent from flight trajectory data. Furthermore, observed flight tracks may not correctly represent pilot preference. In some instances, pilots may have penetrated airspace that they would rather have avoided or they may have avoided airspace that was easily passable. In order to improve and assess the accuracy of the WAF, it is desirable to compare WAF predictions of pilot intent with direct evidence of the airborne experience during weather encounters in en route airspace, such as normal acceleration. To achieve this, a series of flights using a research aircraft was conducted. In the summer of 2008, four research flights (three on 17 July and one on 14 August) were flown in and around convective activity in the upper Midwestern United States to gather aircraft data that could be correlated to the WAF and other remotely-sensed weather data. The aircraft, a Rockwell Sabreliner Model 50 research aircraft (similar to the Sabreliner Model 40 production model) owned by Rockwell-Collins, flew through and around convective activity while recording on-board accelerations for comparison to the WAF deviation probabilities encountered along the flight trajectory. Aircraft state data, on-board weather radar images, video, photographs and pilot narrative from the cockpit were also collected. This paper briefly describes the CWAM model and WAF. Description of the data collection methodology is then presented. Following that section are descriptions of the flights comparing radar data from the flight deck with ground-based weather radar and the WAF. Visual observations and pilot narrative from the flight deck are also presented. Next, the normal acceleration data from on-board accelerometer data are compared with WAF. Finally, conclusions and suggestions for further study are presented.
READ LESS

Summary

The Convective Weather Avoidance Model (CWAM), developed in collaboration with NASA, translates convective weather information into a Weather Avoidance Field (WAF), to determine if pilots will route around convective regions. The WAF provides an estimate of the probability of pilot deviation around convective weather in en route airspace as a...

READ MORE

Comparative analysis of terminal wind-shear detection systems

Published in:
13th Conf. on Aviation, Range and Aerospace Meteorology, ARAM, 20-24 January 2008.

Summary

Low-level wind shear, especially a microburst, is very hazardous to aircraft departing or approaching an airport. The danger became especially clear in a series of fatal commercial airliner accidents in the 1970s and 1980s at U.S. airports. In response, the Federal Aviation Agency (FAA) developed and deployed three ground-based low-altitude wind-shear detection systems: the Low Altitude Wind Shear Alert System (LLWAS) (Wilson and Gramzow 1991), the Terminal Doppler Weather Radar (TDWR) (Michelson et al. 1990), and the Airport Surveillance Radar Weather Systems Processor (ASR-9 WSP) (Weber and Stone 1995). Since the deployment of these sensors, commercial aircraft wind-shear accidents have dropped to near zero in the U.S. This dramatic decrease in accidents caused by wind shear appears to confirm the safety benefits provided by these detection systems. In addition, the broad area measurement capability of the TDWR and WSP provides ancillary delay reduction benefits, for example, by forecasting airport wind shifts that may require runway reconfiguration. The current deployment strategy for these various windshear detection systems is justified by an earlier integrated wind-shear systems cost-benefit analysis (Martin Marietta 1994). Since that time, conditions in the national airspace system (NAS) have evolved, such as the installation of onboard predictive wind-shear detection systems in an increasing number of aircraft, improved pilot training for wind-shear hazard identification, avoidance, and recovery, and further integration of observed wind-shear data into terminal weather systems. Given the tight fiscal environment at the FAA in recent years, the cost of maintaining the wind-shear detection systems has also become an issue. All systems require periodic service life extension programs (SLEPs). In light of these developments, the FAA has tasked MIT Lincoln Laboratory to provide an updated cost-benefit study on their terminal wind-shear detection systems. One of the key factors in estimating the benefits of a terminal wind-shear detection system is its performance. Thus, it is necessary to quantify the wind-shear detection probability for each sensor, preferably on an airport-by-airport basis. To consider sensors that are not yet deployed, a model must be developed that takes into account the various effects that factor into the detection probability. We have developed such a model. The focus of this paper is on this model and the results obtained with it.
READ LESS

Summary

Low-level wind shear, especially a microburst, is very hazardous to aircraft departing or approaching an airport. The danger became especially clear in a series of fatal commercial airliner accidents in the 1970s and 1980s at U.S. airports. In response, the Federal Aviation Agency (FAA) developed and deployed three ground-based low-altitude...

READ MORE

A component model approach for the RCS validation of an electrically large open-ended cylindrical cavity

Published in:
IEEE Antennas and Propagation Society Int. Symp., 2007 Digest, 9-15 June 2007, pp. 2275-2278.

Summary

A novel RCS component prediction model approach to producing both fast and accurate scattering from an electrically large open-ended cylindrical cavity (circular cross section) is presented. The component model is a hybrid approach which easily permits individual scattering mechanisms to be coherently combined to produce a high fidelity signature. For this problem, the component model included scattering produced from the interior of the cavity calculated via the waveguide modal approach combined with the scattering produced from the cavity's finite thick rim opening (i.e., annulus) computed via the Method of Moments (MoM) and finally combined with the cavity's external base ring edge diffraction computed via PTD. Narrowband and wideband signature analysis for the circular cylindrical cavity configuration are presented to validate the component prediction model with static range measurements, and another prediction result computed using MoM for X- band frequencies and linear polarization. Excellent agreement is achieved among the data sets: measurement and prediction (component and MoM model).
READ LESS

Summary

A novel RCS component prediction model approach to producing both fast and accurate scattering from an electrically large open-ended cylindrical cavity (circular cross section) is presented. The component model is a hybrid approach which easily permits individual scattering mechanisms to be coherently combined to produce a high fidelity signature. For...

READ MORE

Exploration of a model relating route availability in en route airspace to actual weather coverage parameters

Published in:
86th AMS Annual Mtg., 1st Symp. on Policy Research, January 2006.

Summary

A major concern in contemporary traffic flow management (TFM) is improving decision making when severe convective weather (Wx) impacts en route sectors throughout the National Airspace System (NAS). The FAA is currently seeking to reduce these convective weather delays through the use of multi-hour (e.g. 4 and 6 hour) Wx forecasts coupled with strategic planning by the FAA traffic flow managers and airline personnel to determine how en route traffic should be rerouted so as to avoid sector overloads and minimize the magnitude of the delays that occur [Huberdeau and Gentry (2004)]. One of the major challenges in the strategic planning process is the difficulty in converting the convective weather forecasts into forecasts of en route sector capacity. In this study, we explore the development of a model that can be combined with forecast validation data to translate probabilistic convective weather (Wx) forecasts into forecasts of a surrogate for sector capacity - the fraction of jet routes that would be blocked- within an en route sector.
READ LESS

Summary

A major concern in contemporary traffic flow management (TFM) is improving decision making when severe convective weather (Wx) impacts en route sectors throughout the National Airspace System (NAS). The FAA is currently seeking to reduce these convective weather delays through the use of multi-hour (e.g. 4 and 6 hour) Wx...

READ MORE

Power-law scattering models and nonlinear parametric estimation for super-resolution radar

Published in:
MIT Lincoln Laboratory Report TR-1095

Summary

This paper introduces a direct solution of the frequency-dependent, GTD-based, scatterer-model parameters leading towards a new modern spectral-estimation technique to be used for enhanced, super-resolution radar analysis. The overcomplete nature of the full GTD scatterer-model basis (positive and negative half-integer power laws) is recognized and overcome by introducing the vector-channel method, well known from communication theory. This physically motivated discretemodel- based analysis eliminates the need for computationally intensive and potentially nonconvergent local optimization procedures. Each scatterer is assigned a half-integer power law that identifies its cross-section frequency dependence and hence restricts the possible underlying physical feature geometries. This analysis opens the possibility for vector-attribute-based feature processing for target recognition that offers the potential for significant improvement in target identification performance.
READ LESS

Summary

This paper introduces a direct solution of the frequency-dependent, GTD-based, scatterer-model parameters leading towards a new modern spectral-estimation technique to be used for enhanced, super-resolution radar analysis. The overcomplete nature of the full GTD scatterer-model basis (positive and negative half-integer power laws) is recognized and overcome by introducing the vector-channel...

READ MORE