Publications

Refine Results

(Filters Applied) Clear All

A 16mW 8Mbps fractional-n FSK modulator at 15.8-18.9GHz

Published in:
2007 IEEE Radio Frequency Integrated Circuits Symp., 3-5 June 2007, pp. 533-536.

Summary

Indirect modulation of fractional-N synthesizers is an energy-efficient architecture capable of moderate data rates, and is well-suited for use in sensor networks or WLAN. Although the architecture is used primarily at low RF frequencies, the capability for fractional- N synthesizers at Ku-band and above currently exist in available silicon technology. Recent demonstrations at 10- 25GHz show promising results, although power consumption at this higher frequency remains high for small batterypowered devices. This work implements a fully-integrated fractional-N synthesizer optimized for power efficient modulation at 15.8 to 18.9GHz with an 80MHz reference. Binary and 4-ary FSK modulation of up to 8Mbps is achieved while consuming 16mW in IBM 0.18um SiGe BiCMOS.
READ LESS

Summary

Indirect modulation of fractional-N synthesizers is an energy-efficient architecture capable of moderate data rates, and is well-suited for use in sensor networks or WLAN. Although the architecture is used primarily at low RF frequencies, the capability for fractional- N synthesizers at Ku-band and above currently exist in available silicon technology...

READ MORE

A sub-10mW 2Mbps BFSK transceiver at 1.35 to 1.75GHz.

Published in:
2007 IEEE Radio Frequency Integrated Circuits Symp., 3-5 June 2007, pp. 97-100.
Topic:
R&D group:

Summary

This work presents the design and measurement of a 2Mbps BFSK transceiver at 1.35 to 1.75GHz for use in wireless sensor node applications. The receiver is a direct conversion architecture and has a sensitivity of -74dBm at 2Mbps and consumes 8.0mW. The transmitter generates orthogonal BFSK modulation through the use of digital pre-emphasis of the synthesizer frequency control word and consumes 9.7mW including the power amplifier. The transmitter delivers >3dBm of output power for a total transmitter power efficiency of 23% and a transmitter FOM of 4.85nJ/bit at 2Mbps.
READ LESS

Summary

This work presents the design and measurement of a 2Mbps BFSK transceiver at 1.35 to 1.75GHz for use in wireless sensor node applications. The receiver is a direct conversion architecture and has a sensitivity of -74dBm at 2Mbps and consumes 8.0mW. The transmitter generates orthogonal BFSK modulation through the use...

READ MORE

Ultra-linear superwideband chirp generator using digital compensation

Published in:
IEEE MTT-S Int. Microwave Symp., 11-16 June 2006, pp. 403-406.

Summary

A novel digital compensation technique is applied to linearize the frequency generation of a superwideband chirp. Ultra-linear, low-noise swept local oscillators (SLO) are critical to the two-tone dynamic range performance of compressive receivers. The proposed technique enables full software control of the chirp linearity, slope, and offset to allow automated real-time calibration and testing, including automatic compensation for temperature variation. This approach combines recently available commercial high-speed digital, mixed-signal, and analog integrated circuits along with microwave components to create a 15.5-24 GHz chirp over 60 nsec with
READ LESS

Summary

A novel digital compensation technique is applied to linearize the frequency generation of a superwideband chirp. Ultra-linear, low-noise swept local oscillators (SLO) are critical to the two-tone dynamic range performance of compressive receivers. The proposed technique enables full software control of the chirp linearity, slope, and offset to allow automated...

READ MORE

Showing Results

1-3 of 3