Publications

Refine Results

(Filters Applied) Clear All

The Terminal Doppler Weather Radar (TDWR) Moving Target Simulator (MTS) at Orlando, Florida

Published in:
MIT Lincoln Laboratory Report ATC-188

Summary

Monitoring the performance of Doppler weather radars presents special problems since target returns cannot be verified by reference to other systems (e,g ., as ASR-9 aircraft reports can be compared with beacon replies). The Terminal Doppler Weather Radar (TDWR) system includes a Moving Target Simulator (MTS) which provides a point target equivalent to a 50 dBZ reflectivity weather return with an apparent radial velocity of 5 m/s. This report describes the installation results for a prototype MTS using the TDWR testbed radar in Orlando, FL. Procedures were developed for improved aiming of the MTS, using aiming of the MTS, using azimuth and elevation adjustments, which are recommended to be incorporated in the production MTS installation procedure. Initial data analyses indicate that the MTS returns from a typical radio tower would be useful for integrity monitoring in fair weather using typical TDWR filters. The use of the MTS when high -reflectivity weather or anomalous propagation (AP) is present needs further study.
READ LESS

Summary

Monitoring the performance of Doppler weather radars presents special problems since target returns cannot be verified by reference to other systems (e,g ., as ASR-9 aircraft reports can be compared with beacon replies). The Terminal Doppler Weather Radar (TDWR) system includes a Moving Target Simulator (MTS) which provides a point...

READ MORE

Terminal Doppler Weather Radar clutter control

Published in:
Proc. IEEE 1990 Int. Radar Conf., 7-10 May 1990, pp. 12-16.

Summary

The FAA is developing the Terminal Doppler Weather Radar system to automatically detect low altitude wind shear due to microbursts and gust fronts. Detection of this phenomenon presents a significant radar engineering challenge due to the need to observe low reflectivity events in the presence of strong clutter from ground objects and range aliased weather returns. This paper describes a number of unique approaches to clutter recognition which have been validated with the TDWR test bed radar.
READ LESS

Summary

The FAA is developing the Terminal Doppler Weather Radar system to automatically detect low altitude wind shear due to microbursts and gust fronts. Detection of this phenomenon presents a significant radar engineering challenge due to the need to observe low reflectivity events in the presence of strong clutter from ground...

READ MORE

Improved MTI radar signal processor

Published in:
MIT Lincoln Laboratory Report ATC-39

Summary

A new type of radar digital signal processor for use with ASR radars is described. It features spectral processing accomplished by combining a 3-pulse canceller with an 8-point, weighted, discrete Fourier transform and adaptive thresholds. This combination of circuits provides a 20-dB increase in MTI improvement factor over present ASR's and is within 2 dB of optimum processing results. An auxiliary channel is provided to allow detection of any target traveling tangentially if its return exceeds the level of ground clutter return in the occupied range/azimuth cell. The spectral processing technique provides discrimination against weather clutter if the returns from weather and from the target fall into different Doppler frequency regions. The output from this equipment is digital hit reports for transmittal to the ARTS-III IOP computer.
READ LESS

Summary

A new type of radar digital signal processor for use with ASR radars is described. It features spectral processing accomplished by combining a 3-pulse canceller with an 8-point, weighted, discrete Fourier transform and adaptive thresholds. This combination of circuits provides a 20-dB increase in MTI improvement factor over present ASR's...

READ MORE

New techniques applied to air-traffic control radars

Summary

During the past two years a program has been carried out to show how new techniques can greatly improve the performance of radars used for air-traffic control. A survey of problems associated with presently used radars was undertaken. This survey indicates that primary radar in an automated air-traffic control system can be made significantly more effective by the use of new techniques. The radar's handling of extraneous reflections (clutter) is critical to its performance. Three types of interfering clutter were found to predominate: ground clutter, weather clutter, and angels. Angels are generally accepted to be radar returns from flocks of birds. In addition, second-time-around clutter is often troublesome. For each type of clutter, all known remedies for improving the signal-to-clutter ratio were studied and radar systems were configured using appropriate sets of remedies. Some specific solutions incorporated in the resulting radar systems are: a) the use of linear large dynamic range, near-optimum digital signal processors to filter signals from clutter, b) the use of electronically step-scanned antennas to improve the correlation of aircraft and clutter returns from pulse to pulse, c) the use of multiple PRF's instead of staggered PRF's together with coherent transmitters to keep second-time-around clutter returns well correlated while still overcoming blind speeds, d) the use of a fine grained ground clutter map to give superclutter visibility on tangential targets, and e) the use of lower operating frequencies to greatly reduce weather and angel returns. Two demonstration radar systems have been implemented, an S-band radar using a mechanically rotating antenna and a UHF radar using an electronically step-scanned cylindrical antenna. Experimental results are described.
READ LESS

Summary

During the past two years a program has been carried out to show how new techniques can greatly improve the performance of radars used for air-traffic control. A survey of problems associated with presently used radars was undertaken. This survey indicates that primary radar in an automated air-traffic control system...

READ MORE

Showing Results

1-4 of 4