Publications
Concept of operations for the Integrated Departure Route Planning (IDRP) tool
Summary
Summary
A concept of operations for the Integrated Departure Route Planner (IDRP) tool is proposed to address issues in the area of departure route management. By combining information about weather and departure demand, IDRP can both identify potential demand/capacity imbalances and recommend a rerouting option, if appropriate. To effectively implement IDRP...
Convective weather avoidance modeling in low-altitude airspace
Summary
Summary
Thunderstorms are a leading cause of delay in the National Airspace System (NAS), and significant research has been conducted to predict the areas pilots will avoid during a storm. An example of such research is the Convective Weather Avoidance Model (CWAM), which provides the likelihood of pilot deviation due to...
Uses for field communication data in designing air traffic management decision support
Summary
Summary
In this paper, example uses of field communication data are provided and how these data impact the evolution of the Route Availability Planning Tool (RAPT) for air traffic management is introduced. Simple communications analyses are provided that illustrate how communications can be used to improve what decision support is provided...
Convective weather avoidance modeling for low-altitude routes
Summary
Summary
Thunderstorms are a leading cause of delay in the National Airspace System (NAS), and significant research has been conducted to predict the areas pilots will avoid during a storm. An example of such research is the Convective Weather Avoidance Model (CWAM), which provides the likelihood of pilot deviation due to...
Estimation of potential IDRP benefits during convective weather SWAP
Summary
Summary
This document presents a preliminary analysis of potential departure delay reduction benefits in New York as the result of the use of the Integrated Departure Route Planning (IDRP) tool during convective severe weather avoidance programs (SWAP). The analysis is based on weather impact and air traffic data from operations between...
Making departure management weather impact models airspace-adaptable: adapting the New York Route Availability Planning Tool (RAPT) to Chicago departure airspace
Summary
Summary
The Route Availability Planning Tool (RAPT) operational prototype was deployed to Chicago in the summer of 2010, the first RAPT deployment outside of the New York departure airspace for which it was originally developed. The goal of the deployment was to evaluate the adaptability of RAPT's airspace definition, departure management...
Route availability planning tool evaluation vizualizations for the New York and Chigaco departure flows
Summary
Summary
When operationally significant weather affects a region of the National Airspace System (NAS) a Severe Weather Avoidance Program (SWAP) is initiated for that region. Each SWAP event is a unique mix of demand, weather conditions, traffic flow management (TFM) initiatives and traffic movement. On the day following a SWAP, the...
Modeling convective weather avoidance of arrivals in the terminal airspace
Summary
Summary
For several years the NASA sponsored Convective Weather Avoidance Model (CWAM) has been under development at Lincoln Lab to correlate pilot behavior with observable weather parameters available from convective weather systems. To date, the current CWAM has focused primarily on the enroute airspace used by aircraft at cruise altitude. At...
Assessment and interpretation of en route Weather Avoidance Fields from the Convective Weather Avoidance Model
Summary
Summary
This paper presents the results of a study to quantify the performance of Weather Avoidance Fields in predicting the operational impact of convective weather on en route airspace. The Convective Weather Avoidance Model identifies regions of convective weather that pilots are likely to avoid based upon an examination of the...
An algorithm to identify robust convective weather avoidance polygons in en route airspace
Summary
Summary
The paper describes an algorithm for constructing convective weather avoidance polygons. The algorithm combines weather avoidance fields (WAF) from the en route convective weather avoidance model (CWAM) with edges automatically detected in the echo tops field, clustering, convex hull fitting and wind data to build weather avoidance polygons. Results for...