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Thunderstorms are a leading cause of delay in the National Airspace System (NAS), and significant research has been conducted 
to predict the areas pilots will avoid during a storm. An example of such research is the Convective Weather Avoidance Model 
(CWAM), which provides the likelihood of pilot deviation due to convective weather in a given area. This report extends the scope 
of CWAM to include low-altitude flights, which typically occur below the tops of convective weather and have slightly different 
operational constraints. In general, the set of low-altitude flights includes short-hop routes and low-altitude escape routes used 
to reduce the impact of convective weather in the terminal area. For classification, low-altitude flights are identified as either 
deviations or non-deviations, and the corresponding weather features are analyzed. Precipitation intensity is observed to be the 
best predictor of deviation in the low-altitude flight regime, as compared to the difference in altitude between the flight and the 
echo tops for en route flights. Additionally, the low-altitude CWAM performs better than the departure CWAM currently used 
in the Route Availability Planning Tool (RAPT) when tested on deterministic weather data. 
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1. INTRODUCTION 

Convective weather is a significant impediment to effective and efficient Air Traffic Management 
(ATM) decisions, and sometimes results in unnecessary delays to the National Airspace System (NAS). 
70% of delays in the NAS are caused by weather, and of those delays, 60% are specifically accounted for 
by convective weather [1]. Currently, rerouting decisions made by air traffic managers are aided by 
weather products such as the Corridor Integrated Weather System (CIWS) and the National Convective 
Weather Forecast (NCWF) [2, 3]. While these products provide a high quality representation of storm 
activity, it is difficult to predict the NAS impact from data based solely on the weather. In a Next 
Generation ATM system, decision support tools such as the Route Availability Planning Tool (RAPT) 
will mitigate weather-induced delays by supplementing the situational awareness of an air traffic manager 
with a forecast of the availability of specific flight routes [4]. The RAPT tool is based on the Convective 
Weather Avoidance Model (CWAM), which is a probabilistic model of pilot decision making in the 
presence of convective weather [5]. The output of CWAM is a three dimensional weather avoidance field 
(WAF), which is a probability map of the likelihood that a pilot will deviate at a specific position and 
time given the current and forecasted weather. 

CWAM was originally developed for the en route flight regime by correlating observed weather 
with trajectories of aircraft that penetrated or avoided areas of convective weather. The deviation decision 
of each flight was recorded, and the weather statistics for each route were obtained using data from CIWS 
and stored in a database. Deviations were determined by comparing the distance between the actual and 
planned trajectories of the flight, and if that distance was greater than a specified “deviation threshold,” a 
deviation was recorded. Pattern classification experiments were run on the CWAM database and the 
results showed that the most descriptive predictors for deviation were related to the echo top height, 
where the most descriptive was the difference in altitude between the aircraft and the echo top height [5]. 
In the terminal area, several studies of the Dallas and Memphis areas using weather information from the 
Integrated Terminal Weather System (ITWS) showed that deviation decisions are more closely related to 
the radar intensity of the storm and the proximity of the aircraft to the airport [6, 7]. 

This report presents the development of a low altitude version of CWAM which is based on a 
database composed of weather encounters that occur during level flight at or below FL240. The low 
altitude CWAM described here is applicable to jet traffic that uses low altitude air routes to ‘escape’ from 
terminal areas when weather or volume congestion impacts lead to constraints on high altitude airspace, 
or to low altitude flight by regional jets on ‘short hop’ routes. Such traffic was commonly observed in the 
New York metroplex as part of the field evaluation of RAPT. The creation of a low altitude CWAM will 
enable RAPT to provide weather impact guidance on low altitude routes that are currently excluded from 
the RAPT departure route database. 

For this study, flight trajectories are obtained from the Enhanced Traffic Management System 
(ETMS) database, and weather data are acquired from CIWS for nine convective weather days across two 
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geographical regions (Chicago and New York). A Gaussian classifier is used to determine a set of 
deviation predictors and the results are tested on observed data. The predictor performance is compared to 
the existing terminal departure CWAM used in RAPT, and the differences are discussed.  
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2. METHODS 

The database for this work reflects the behavior of low altitude flight deviations in the presence of 
convective weather. A low altitude flight is defined as a flight which achieves level flight below FL240, 
and does not climb above FL240 within 20 minutes of departure. Extremely low altitude flights (< 10 kft) 
and flights involving light aircraft are excluded from the database. Additionally, flights that make a 
decision to deviate while climbing or descending are not included in the database. The database contains 
an entry for each flight, and includes statistics on the type and severity of weather encountered as well as 
whether or not the flight deviated.  

Flight trajectories are obtained from the ETMS database for a set of days involving convective 
weather in the Chicago and New York areas. The ETMS data provide the three dimensional position of 
each flight (with a 1 minute time step), and a list of navigation fixes that represent the flight plan of each 
flight. Weather data are acquired from the CIWS archive, and weather characteristic fields were created 
and used as deviation predictors. The details of the weather characteristic fields are described later in this 
section.  

There are two categories of flight observed in the set of low altitude flights. First, and most 
prominent, are short haul routes where the cruise altitude of the aircraft does not pass above FL240. The 
second category involves a step climb where the aircraft levels off below FL240 before resuming its 
climb to cruise. Typically, the step climb routes encounter weather closer to the airport than the short haul 
routes. 

The original CWAM used an automated process to separate deviations from non-deviations by 
comparing the distance between the actual and planned trajectories of a flight to a “deviation threshold.” 
In the en route environment this is an acceptable strategy because flights rarely stray from their planned 
route. In the low altitude environment this is not the case as aircraft are routinely vectored for shortcuts 
(predominately short haul routes), or traffic in the terminal area (step climb routes). Figure 1 illustrates a 
case in which the flight did not follow the planned route. 
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Figure 1.  Example of low altitude flight not following planned route. 

The magenta line shows the planned route and the white dots show the actual trajectory. In this 
example, the flight originates from Chicago O’Hare International Airport (ORD) and changes its route 
soon after departure to take a more direct track to Cincinnati/Northern Kentucky International Airport 
(CVG). This is a common shortcut given by ATC, and whether it is given primarily depends on the 
density of traffic and other hazards to flight in the region. Because of these inconsistencies, an automated 
process to determine deviations is infeasible; therefore, each trajectory in the low altitude database is 
manually analyzed to determine whether or not it is a deviation. In the analysis, a deviation is recorded 
when a flight is observed to make a decisive maneuver to avoid weather while in level flight. Figure 2 
shows a flight from Chicago to Cincinnati which deviates around weather.  
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Figure 2.  In-flight deviation around convective weather. 

If a deviation is identified, the weather characteristics responsible for the deviation are recorded 
from the planned flight path at the time of the deviation decision. On the other hand, a non-deviation is 
recognized as a flight that penetrates weather with VIL ≥ 1 and does not deviate. In this case, the weather 
characteristics are recorded at the point along the flight path where the flight encountered the highest VIL. 
The low altitude database contains flights from nine days and two regions. The regions consist of Chicago 
and New York, and the airports are Chicago O’Hare (ORD), Midway (MDW), New York LaGuardia 
(LGA), John F. Kennedy (JFK), and Newark (EWR). Table 1 lists the number of deviations and non-
deviations in each region on each day in the database. The total number of flights in the database is 2539, 
where 1248 of the flights encountered weather and 309 flights deviated because of the weather. It should 
be noted that “serial deviations,” where a flight deviated more than once, are not recorded as multiple 
deviations. Additionally, weather encounters that occur before or after a deviation are not recorded as 
multiple encounters. 
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Table 1.  Number of Trajectories in the Low Altitude CWAM Database 

 ORD, MDW JFK, LGA, EWR 

   Date Deviations Non-Deviations Deviations Non-Deviations 

06/08/2009 43 91 -- -- 

06/09/2009 -- -- 34 133 

06/13/2009 -- -- 42 122 

06/19/2009 33 64 -- -- 

08/10/2009 -- -- 38 51 

04/07/2010 23 117 -- -- 

06/01/2010 -- -- 48 100 

06/04/2010 17 101 -- -- 

08/04/2010 31 160 -- -- 

Total 147 533 162 406 

 
Table 2 lists the weather characteristics which describe the possible weather metrics that could 

influence a pilot’s decision to deviate around a storm. This list is based on intuition formed from previous 
work [4-7], and the available weather data. The kernel size is the side-length of the square spatial filter 
applied at each grid point of the data. For example, VIL8(x,y) is the 90th percentile VIL value in an 8 × 8 
km square centered at the grid point (x,y). The variance characteristics are calculated over an 8 km kernel, 
and in the case of echo tops, the data are pre-processed to exclude values less than 30,000 ft. 

 

Table 2.  Set of Weather Characteristics 

VIL1 

(90th Percentile Precipitation 

Intensity, 1 km kernel) 

VIL8 

(90th Percentile Precipitation 

Intensity, 8 km kernel) 

VIL16 

(90th Percentile Precipitation 

Intensity, 16 km kernel) 

ET1 

(90th Percentile Echo Top     

Height, 1 km kernel) 

ET8 

(90th Percentile Echo Top Height, 

8 km kernel) 

ET16 

(90th Percentile Echo Top   

Height, 16 km kernel) 

VILVAR 

(90th Percentile VIL Variance,   

8 km kernel) 

ETVAR 

(90th Percentile Echo Top Height 

Variance, 8 km kernel) 

VILCOV 

(Area Percent Coverage with   

VIL ≥ 3, 16 km kernel) 

VILpVAR 

(VIL1 + Maximum VIL Variance,  

8 km kernel) 

ETpVAR 

(ET1 + Maximum Echo Top Height 

Variance, 8 km kernel) 
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The creation of the VILpVAR and ETpVAR weather characteristics is motivated by recent work 
that found stratiform rain to be a common false deviation prediction error mode in CWAM [8]. A 
characteristic of stratiform rain is intense precipitation with high cloud tops over a large area, which 
results in a WAF with high probability of deviation. However, in spite of the high WAF values, aircraft 
are frequently observed flying through these regions. A more implicit characteristic of stratiform rain is a 
low variance in VIL and echo tops across the area, and these are the properties exploited in VILpVAR 
and ETpVAR. For example, VILpVAR is the sum of the VIL at a grid point and the maximum variance 
of VIL in an 8 km kernel around that grid point. Stratiform rain results in a large VIL value with a small 
variance in VIL which drives VILpVAR to be lower compared to a normal convective cell (which has 
large VIL with a large variance in VIL). This gives the appearance that stratiform rain is less dangerous 
than regular convection. Figure 3 illustrates this point by showing a flight through stratiform rain over 
Chicago. The figures on the left side show the VIL and echo tops of the system, which are as high as level 
5 and 40,000 ft, respectively. The figure on the right shows the same flight overlaid on VILpVAR, which 
is much more benign and shows the flight going through an equivalent level 2 of precipitation.  

Figure 3.  A flight through stratiform rain over Chicago. Left top: Flight overlaid on VIL. Left bottom: Flight 
overlaid on echo tops. Right: Flight overlaid on VILpVAR. 
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The low altitude deviation database is input to a Gaussian classifier that uses a diagonal covariance 
matrix and a linear discriminant function. This is the same technique used in previous work [5]. The 
classifier finds the combination of predictors that minimize the overall classification error. In addition, it 
finds the corresponding separating hyperplane that defines the boundary between the deviation and non-
deviation spaces. The output from the classification experiment is a set of “best” predictors and 
combinations of predictors that are used in a series of modeling experiments to confirm their relative 
performance. The database was partitioned into histogram bins defined for the set of predictors, and the 
observed probability of deviation was found for each bin. The probability of deviation bins were filled out 
and smoothed using a discretized smoothing spline technique based on the discrete cosine transform [9]. 
The resulting smoothed tables were tested as candidate WAFs, and the performance of the predictors were 
compared. 
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3. RESULTS  

Figure 4 compares the total prediction error for several combinations of the predictors, where the 
total prediction error is the percentage of incorrect predictions in the set of encounters contained in the 
database. 

Figure 4.  Total predictor error of the full set of 1- and 2-predictor classifiers. 

According to Figure 4, VIL is the dominant predictor in the set of weather characteristics. The most 
accurate predictor is {VIL1, VILpVAR}, which also shows the benefit of accounting for the variance of 
the VIL to better detect areas of stratiform rain. However, there is little difference in total prediction error 
when the 1-predictor VIL classifiers are compared to the 2-predictor classifiers. This implies little benefit 
to the addition of a second predictor to the classifier. In addition, echo tops are shown to be not a good 
predictor of deviation for low altitude routes, which confirms previous that claimed precipitation intensity 
to be the best predictor in the terminal area [6, 7]. 
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To better understand the relative differences between multi-predictor classifiers with similar total 
prediction error rates, a “best” classifier is selected from each of the N-predictor classifiers and their 
results are compared. Figure 5 lists the “best” predictor(s) for each N-predictor classifier and shows the 
total prediction error for the full dataset as well as for the specific datasets of Chicago and New York. The 
total prediction error for the complete dataset, Chicago, and New York are given as the green, blue, and 
red squares, respectively. 

 

Figure 5.  Comparison of total prediction error between different geographic regions and classifiers with different 
number of predictors.   

1 Predictor VIL1
2 Predictor VIL1, VILpVAR
3 Predictor VIL1, VILpVAR, ETVAR
4 Predictor VIL1, VILpVAR, VIL8, ET1
5 Predictor VIL1, VILpVAR, VIL8, ET1, ET16
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In general, as the number of predictors increases, the total prediction error of the full dataset does 
not change significantly. However, it is interesting that the 4- and 5-predictor classifiers result in a much 
smaller spread in error between Chicago and New York than the lower-order predictor classifiers. 
Additionally, although the addition of VILpVAR to the 1-predictor classifier results in lower total 
prediction error, the spread in error between Chicago and New York increases dramatically. Also, the 
total error in Chicago is much less than the error in New York, which indicates VILpVAR does a good 
job in handling stratiform rain (more prevalent in the Chicago dataset), but is not very adaptable to other 
scenarios. Another explanation is that there could be more high-topped anvil cases in New York than 
Chicago, which VILpVAR would incorrectly score as non-deviation regions. 

 
It is equally important to consider deviation and non-deviation error in addition to total prediction 

error when investigating the performance of a classifier. Deviation error is defined as the number of 
misclassified deviations divided by the number of deviations, and non-deviation error is defined as the 
number of misclassified non-deviations divided by the number of non-deviations. The relationship 
between deviation and non-deviation error provides insight into whether the classifier is under or over-
predicting deviations. In many cases, two classifiers can have similar total prediction error but vastly 
different deviation or non-deviation errors. Figure 6 compares the total prediction error, deviation error, 
and non-deviation error for the set of classifiers shown in Figure 5. The spread between the deviation and 
non-deviation errors increases between the 1- and 2-predictor classifiers, but decreases with the 3-
predictor classifier. The addition of 4- and 5-predictors does not significantly affect the total error or the 
deviation/non-deviation error spread. This is a similar behavior as has been observed previously [5]. 

Although there is a slight decrease in total predictor error for a multi-predictor classifier compared 
to a 1-predictor classifier, it is not enough to justify the associated increase in complexity and error 
spread. Therefore, 1-predictor classifiers (VIL1, VIL8, and VIL16) were tested against the data to gain 
further understanding of their performance. Figure 7 presents the smoothed probability of deviation tables 
for the 1-predictor classifiers. 

Weather encounters are divided into 10 bins based on the value of VIL (0-255) as determined by 
each model’s spatial filter. The probability of deviation is calculated by the ratio of deviations to non-
deviations inside each bin. In Figure 7, the vertical lines show the partitions of the 6-level VIP scale, and 
the color indicates the probability of deviation.  
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Figure 6.  Comparison of total prediction error, deviation error, and non-deviation error for classifiers with 
different numbers of predictors. 
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Figure 7.  WAF lookup table for three 1-predictor models with different spatial filter size. 

Figure 8 shows deviation/non-deviation histograms for the low altitude database using the three 
spatial filters described above. The top figure uses the native 1 km VIL resolution, the middle figure uses 
an 8 km spatial filter, and the bottom figure uses a 16 km spatial filter. At first glance there is not much 
difference between the histograms. But a detailed analysis reveals that as the size of the spatial filter 
increases, the number of non-deviations at each VIP level increases, whereas the number of deviations at 
each VIP level remains relatively unchanged. It makes sense that the number of non-deviations increases 
with spatial filter size because the filter grows the physical size of the weather regions, causing a flight 
that might be a non-encounter with the 1 km resolution to be a non-deviation with the 8 km spatial filter. 
The fact that the number of deviations does not change much with spatial filter size implies that the 
flights, in general, do not deviate unless their proposed flight path passes through an area of severe 
weather. In other words, flights do not give much margin of safety between the storm and their flight 
plan. The behavior is also reflected in the total prediction error of the predictors, which increases with 
spatial filter size. 
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Figure 8.  Deviation/non-deviation histograms. Top: 1 km spatial filter. Middle: 8 km spatial filter. Bottom: 16 km 
spatial filter. 
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Figure 9 shows the relative performance of the 1-predictor models and the existing terminal area 
departure WAF currently used in RAPT in terms of the probability of detection, false alarm rate, and 
critical skill index. The probability of detection (PoD) is shown in equation 1, where hits are correct 
predictions of deviation and misses are incorrect predictions of deviation.  

 
(1) 

 

The false alarm rate (FAR) is given in equation 2, where false is the number of false predictions. 
 

(2) 
 

The critical skill index (CSI) is a measure of the overall skill of the predictor and is given in equation 3. 
 

(3) 
 

The red, blue, and black lines represent the performance of the model tested on the Chicago, New 
York, and combined databases, respectively. The green line shows the performance of the current 
departure WAF in RAPT when tested on the combined database. The most apparent observations from 
Figure 9 are the differences between the performance in Chicago and New York and the improvement in 
overall performance compared to the current RAPT departure WAF. It is interesting that the WAF 
threshold for maximum CSI is much lower for the RAPT departure WAF compared to the WAF models 
developed for this report. This implies that the RAPT departure WAF is under-predicting deviations in 
the low altitude flight regime. In other words, flights in the low altitude regime deviate around less severe 
weather than initially expected in the RAPT development. Additionally, the RAPT departure WAF does 
not perform as well in the tradeoff between probability of detection and false alarm rate. A good way to 
qualify the best tradeoff between probability of detection and false alarm rate is to see which data points 
are closest to the top left corner of the figure (PoD = 1.0, FAR = 0.0). All three predictors (VIL1, VIL8, 
VIL16) show a strong “kink” in the PoD vs. FAR curves which indicates there is a clear choice for the 
best WAF threshold.  
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Figure 9.  Predictor performance (probability of detection vs. false alarm rate and critical skill index vs. WAF 
threshold) for predictors of different spatial filter size. Top (a,b): 1 km kernel. Middle (c,d): 8 km kernel. Bottom 
(e,f): 16 km kernel. 

(a) (b) 

(c) (d) 

(e) (f)
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The maximum CSI for the predictors is compared in Figure 10a. The maximum CSI scores for the 
VIL1, VIL8, and VIL16 predictors were almost identical, and they consistently performed better in New 
York than Chicago. The RAPT departure WAF is much more consistent between New York and Chicago, 
but shows worse overall performance when compared to the predictors developed in this report. Figure 
10b shows the decisiveness ratio of the predictors, where the decisiveness ratio is the fraction of flights 
which encounter WAF values greater than 70% and less than 30%. The decisiveness ratio is calculated 
with equation 4, where Nenc>70% is the number of encounters which penetrate a WAF contour greater than 
70%, Nenc<30% is the number of encounters which penetrate a WAF contour less than 30%, and Ntot is the 
total number of encounters. 

(4) 
 

Generally speaking, the deciciveness ratio gives a sense of the fraction of flights that can be identified as 
either a deviation or non-deviation at a high level of confidence. 

The most decisive predictor is VIL8, followed by VIL16, VIL1, and lastly the RAPT departure 
WAF. Decisiveness is an important metric because it is a measure of the certainty of the predictor. For 
example, a highly certain predictor enhances situational awareness in ATM by providing “yes/no” advice 
on route blockage instead of “maybe.”  

In using this research to determine the best predictor for the low altitude dataset, one must consider 
decisiveness in addition to the prediction error and critical skill index. From the results of this work, VIL8 
(VIL with an 8 km spatial filter) is the best combination of accuracy and decisiveness. 
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Figure 10.  Comparison of maximum CSI (a) and decisiveness ratio (b) for the classifiers analyzed in this report. 

(a)

(b)
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4. CONCLUSIONS 

This study introduces a low altitude version of CWAM, which is an extension of the existing 
CWAM which was developed for the en route flight regime. It presents a probabilistic model of pilot 
deviation decision making for flights at or below FL240 in the presence of convective weather. The 
model was applied to a database of nearly 1000 encounters with convective weather, of which 309 
resulted in deviations. It was found that precipitation intensity, specifically VIL level, is the dominating 
predictor in the low altitude flight regime. Moreover, there is little added benefit to adding additional 
predictors to the VIL-based classifier model. Lastly, the low altitude CWAM developed by this work 
showed better performance in both accuracy and decisiveness than the current departure CWAM used in 
RAPT when tested on real data.  

Future work should include an expansion of the low altitude database, which will allow a more 
robust analysis of the predictors to validate these results and give a better indication of the true 
performance of higher dimension classifiers. Additional work is needed to investigate the differences in 
performance between New York and Chicago airspace and to determine if there are significant airspace 
dependencies that can be identified and corrected for. More work should be done in refining the 
VILpVAR metric, as it showed promise in mitigating the effect of a common error mode (stratiform rain). 
It is also necessary to apply these models to a scenario involving forecasted weather to analyze the impact 
of the added uncertainty to the classifier performance. Finally, the low altitude route structure needs to be 
better defined in order to integrate this work with a tool such as RAPT. 
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APPENDIX  A 
PREDICTION MODEL 

The weather avoidance fields (WAFs) in the low altitude CWAM are generated with a prediction 
model that will be described in this appendix. The database of low altitude flights through convective 
weather includes weather statistics calculated from CIWS, and flight trajectories obtained from ETMS. 
Predictors of deviation are selected from a set of weather characteristics that are listed in Table A1. 

Table A1. Set of Weather Characteristics 

VIL1 

(90th Percentile Precipitation 

Intensity, 1 km kernel) 

VIL8 

(90th Percentile recipitation 

Intensity, 8 km kernel) 

VIL16 

(90th Percentile Precipitation 

Intensity, 16 km kernel) 

ET1 

(90th Percentile Echo Top 

Height, 1 km kernel) 

ET8 

(90th Percentile Echo Top Height, 

8 km kernel) 

ET16 

(90th Percentile Echo Top 

Height, 16 km kernel) 

VILVAR 

(90th Percentile VIL Variance,  

8 km kernel) 

ETVAR 

(90th Percentile Echo Top Height 

Variance, 8 km kernel) 

VILCOV 

(Area Percent Coverage with 

VIL ≥ 3, 16 km kernel) 

VILpVAR 

(VIL1 + Maximum VIL Variance, 

8 km kernel) 

ETpVAR 

(ET1 + Maximum Echo Top 

Height Variance, 8 km kernel) 

 

 

 
The predictors are input to a classification experiment based on a Gaussian model with a diagonal 

covariance matrix and a linear discriminant function. The objective of the classification experiment is 
minimum total predication error, and the best predictor was found to be {VIL1, VILpVAR}, but with VIL 
playing a dominating role. Analysis of the classification results shows VIL alone to be a sufficient 
predictor of deviation, and three VIL models of different spatial filters are further analyzed in the report. 
One model uses the native resolution of VIL (1 km), and the other two models use spatial filters of 8 km, 
and 16 km, respectively. The spatial filter consists of a box with side-length (x)km surrounding the grid 
point in question, and the 90th percentile of the VIL inside the box given as the filtered value at that grid 
point. 

Probability of deviation tables for the three models are calculated by dividing the deviation/non-
deviation database into 10 equally sized bins based on the model’s filtered VIL values, and the probability 
of deviation inside of each bin is calculated with the ratio of deviations to non-deviations. The WAF 
tables for each model are found by smoothing the probability of deviation tables using a discretized 
smoothing spline technique based on the discrete cosine transform. The resulting tables are shown in 
Table A2. 
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Table A2. WAF Tables 

VILrange 0≤x≤25.5 25.5<x≤51 51<x≤76.5 76.5<x≤102 102<x≤127.5

VIL1 0 0.02516 0.11111 0.27404 0.48051 

VIL8 0.00133 0.00896 0.02204 0.08568 0.26515 

VIL16 0.00133 0.00257 0.02416 0.12548 0.32801 

      

VIL range 127.5<x≤153 153<x≤178.5 178.5<x≤204 204<x≤229.5 229.5<x≤255

VIL1 0.69443 0.87615 0.98004 1 1 

VIL8 0.52951 0.80275 0.99382 1 1 

VIL16 0.57795 0.81472 0.95162 1 1  
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GLOSSARY 

ATC Air Traffic Control 

ATM Air Traffic Management  

CIWS Corridor Integrated Weather System  

CSI critical skill index  

CVG Cincinnati/Northern Kentucky International Airport  

CWAM Convective Weather Avoidance Model  

ETMS Enhanced Traffic Management System  

EWR Newark Liberty International Airport 

FAR false alarm rate  

ITWS Integrated Terminal Weather System  

JFK John F. Kennedy Airport 

LGA New York LaGuardia Airport 

MDW Chicago Midway Airport 

NAS National Airspace System  

NCWF National Convective Weather Forecast  

ORD Chicago O’Hare International Airport  

PoD probability of detection  

RAPT Route Availability Planning Tool  

VIL Vertically Integrated Liquid Water 

VIP Video Integrator and Processor 

WAF weather avoidance field  
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