Publications
Very large graphs for information extraction (VLG) - detection and inference in the presence of uncertainty
Summary
Summary
In numerous application domains relevant to the Department of Defense and the Intelligence Community, data of interest take the form of entities and the relationships between them, and these data are commonly represented as graphs. Under the Very Large Graphs for Information Extraction effort--a one year proof-of-concept study--MIT LL developed...
A spectral framework for anomalous subgraph detection
Summary
Summary
A wide variety of application domains is concerned with data consisting of entities and their relationships or connections, formally represented as graphs. Within these diverse application areas, a common problem of interest is the detection of a subset of entities whose connectivity is anomalous with respect to the rest of...
Temporal and multi-source fusion for detection of innovation in collaboration networks
Summary
Summary
A common problem in network analysis is detecting small subgraphs of interest within a large background graph. This includes multi-source fusion scenarios where data from several modalities must be integrated to form the network. This paper presents an application of novel techniques leveraging the signal processing for graphs algorithmic framework...
Very large graphs for information extraction (VLG) - summary of first-year proof-of-concept study
Summary
Summary
In numerous application domains relevant to the Department of Defense and the Intelligence Community, data of interest take the form of entities and the relationships between them, and these data are commonly represented as graphs. Under the Very Large Graphs for Information Extraction effort--a one-year proof-of-concept study--MIT LL developed novel...
P-sync: a photonically enabled architecture for efficient non-local data access
Summary
Summary
Communication in multi- and many-core processors has long been a bottleneck to performance due to the high cost of long-distance electrical transmission. This difficulty has been partially remedied by architectural constructs such as caches and novel interconnect topologies, albeit at a steep cost in terms of complexity. Unfortunately, even these...
Detection theory for graphs
Summary
Summary
Graphs are fast emerging as a common data structure used in many scientific and engineering fields. While a wide variety of techniques exist to analyze graph datasets, practitioners currently lack a signal processing theory akin to that of detection and estimation in the classical setting of vector spaces with Gaussian...
Benchmarking parallel eigen decomposition for residuals analysis of very large graphs
Summary
Summary
Graph analysis is used in many domains, from the social sciences to physics and engineering. The computational driver for one important class of graph analysis algorithms is the computation of leading eigenvectors of matrix representations of a graph. This paper explores the computational implications of performing an eigen decomposition of...
A scalable signal processing architecture for massive graph analysis
Summary
Summary
In many applications, it is convenient to represent data as a graph, and often these datasets will be quite large. This paper presents an architecture for analyzing massive graphs, with a focus on signal processing applications such as modeling, filtering, and signal detection. We describe the architecture, which covers the...
Eigenspace analysis for threat detection in social networks
Summary
Summary
The problem of detecting a small, anomalous subgraph within a large background network is important and applicable to many fields. The non-Euclidean nature of graph data, however, complicates the application of classical detection theory in this context. A recent statistical framework for anomalous subgraph detection uses spectral properties of a...
Matched filtering for subgraph detection in dynamic networks
Summary
Summary
Graphs are high-dimensional, non-Euclidean data, whose utility spans a wide variety of disciplines. While their non-Euclidean nature complicates the application of traditional signal processing paradigms, it is desirable to seek an analogous detection framework. In this paper we present a matched filtering method for graph sequences, extending to a dynamic...