Publications

Refine Results

(Filters Applied) Clear All

Very large graphs for information extraction (VLG) - detection and inference in the presence of uncertainty

Summary

In numerous application domains relevant to the Department of Defense and the Intelligence Community, data of interest take the form of entities and the relationships between them, and these data are commonly represented as graphs. Under the Very Large Graphs for Information Extraction effort--a one year proof-of-concept study--MIT LL developed novel techniques for anomalous subgraph detection, building on tools in the signal processing research literature. This report documents the technical results of this effort. Two datasets--a snapshot of Thompson Reuters' Web of Science database and a stream of web proxy logs--were parsed, and graphs were constructed from the raw data. From the phenomena in these datasets, several algorithms were developed to model the dynamic graph behavior, including a preferential attachment mechanism with memory, a streaming filter to model a graph as a weighted average of its past connections, and a generalized linear model for graphs where connection probabilities are determined by additional side information or metadata. A set of metrics was also constructed to facilitate comparison of techniques. The study culminated in a demonstration of the algorithms on the datasets of interest, in addition to simulated data. Performance in terms of detection, estimation, and computational burden was measured according to the metrics. Among the highlights of this demonstration were the detection of emerging coauthor clusters in the Web of Science data, detection of botnet activity in the web proxy data after 15 minutes (which took 10 days to detect using state-of-the-practice techniques), and demonstration of the core algorithm on a simulated 1-billion-vertex graph using a commodity computing cluster.
READ LESS

Summary

In numerous application domains relevant to the Department of Defense and the Intelligence Community, data of interest take the form of entities and the relationships between them, and these data are commonly represented as graphs. Under the Very Large Graphs for Information Extraction effort--a one year proof-of-concept study--MIT LL developed...

READ MORE

A spectral framework for anomalous subgraph detection

Published in:
IEEE Trans. Signal Process., Vol. 63, No. 16, 15 August 2015, 4191-4206.

Summary

A wide variety of application domains is concerned with data consisting of entities and their relationships or connections, formally represented as graphs. Within these diverse application areas, a common problem of interest is the detection of a subset of entities whose connectivity is anomalous with respect to the rest of the data. While the detection of such anomalous subgraphs has received a substantial amount of attention, no application-agnostic framework exists for analysis of signal detectability in graph-based data. In this paper, we describe a framework that enables such analysis using the principal eigenspace of a graph's residuals matrix, commonly called the modularity matrix in community detection. Leveraging this analytical tool, we show that the framework has a natural power metric in the spectral norm of the anomalous subgraph's adjacency matrix (signal power) and of the background graph's residuals matrix (noise power). We propose several algorithms based on spectral properties of the residuals matrix, with more computationally expensive techniques providing greater detection power. Detection and identification performance are presented for a number of signal and noise models, including clusters and bipartite foregrounds embedded into simple random backgrounds, as well as graphs with community structure and realistic degree distributions. The trends observed verify intuition gleaned from other signal processing areas, such as greater detection power when the signal is embedded within a less active portion of the background. We demonstrate the utility of the proposed techniques in detecting small, highly anomalous subgraphs in real graphs derived from Internet traffic and product co-purchases.
READ LESS

Summary

A wide variety of application domains is concerned with data consisting of entities and their relationships or connections, formally represented as graphs. Within these diverse application areas, a common problem of interest is the detection of a subset of entities whose connectivity is anomalous with respect to the rest of...

READ MORE

Temporal and multi-source fusion for detection of innovation in collaboration networks

Published in:
Proc. of the 18th Int. Conf. On Information Fusion, 6-9 July 2015.

Summary

A common problem in network analysis is detecting small subgraphs of interest within a large background graph. This includes multi-source fusion scenarios where data from several modalities must be integrated to form the network. This paper presents an application of novel techniques leveraging the signal processing for graphs algorithmic framework, to well-studied collaboration networks in the field of evolutionary biology. Our multi-disciplinary approach allows us to leverage case studies of transformative periods in this scientific field as truth. We build on previous work by optimizing the temporal integration filters with respect to truth data using a tensor decomposition method that maximizes the spectral norm of the integrated subgraph's adjacency matrix. We also demonstrate that we can mitigate data corruption via fusion of different data sources, demonstrating the power of this analysis framework for incomplete and corrupted data.
READ LESS

Summary

A common problem in network analysis is detecting small subgraphs of interest within a large background graph. This includes multi-source fusion scenarios where data from several modalities must be integrated to form the network. This paper presents an application of novel techniques leveraging the signal processing for graphs algorithmic framework...

READ MORE

Very large graphs for information extraction (VLG) - summary of first-year proof-of-concept study

Summary

In numerous application domains relevant to the Department of Defense and the Intelligence Community, data of interest take the form of entities and the relationships between them, and these data are commonly represented as graphs. Under the Very Large Graphs for Information Extraction effort--a one-year proof-of-concept study--MIT LL developed novel techniques for anomalous subgraph detection, building on tools in the signal processing research literature. This report documents the technical results of this effort. Two datasets--a snapshot of Thompson Reuters? Web of Science database and a stream of web proxy logs--were parsed, and graphs were constructed from the raw data. From the phenomena in these datasets, several algorithms were developed to model the dynamic graph behavior, including a preferential attachment mechanism with memory, a streaming filter to model a graph as a weighted average of its past connections, and a generalized linear model for graphs where connection probabilities are determined by additional side information or metadata. A set of metrics was also constructed to facilitate comparison of techniques. The study culminated in a demonstration of the algorithms on the datasets of interest, in addition to simulated data. Performance in terms of detection, estimation, and computational burden was measured according to the metrics. Among the highlights of this demonstration were the detection of emerging coauthor clusters in the Web of Science data, detection of botnet activity in the web proxy data after 15 minutes (which took 10 days to detect using state-of-the-practice techniques), and demonstration of the core algorithm on a simulated 1-billion-vertex graph using a commodity computing cluster.
READ LESS

Summary

In numerous application domains relevant to the Department of Defense and the Intelligence Community, data of interest take the form of entities and the relationships between them, and these data are commonly represented as graphs. Under the Very Large Graphs for Information Extraction effort--a one-year proof-of-concept study--MIT LL developed novel...

READ MORE

P-sync: a photonically enabled architecture for efficient non-local data access

Summary

Communication in multi- and many-core processors has long been a bottleneck to performance due to the high cost of long-distance electrical transmission. This difficulty has been partially remedied by architectural constructs such as caches and novel interconnect topologies, albeit at a steep cost in terms of complexity. Unfortunately, even these measures are rendered ineffective by certain kinds of communication, most notably scatter and gather operations that exhibit highly non-local data access patterns. Much work has gone into examining how the increased bandwidth density afforded by chip-scale silicon photonic interconnect technologies affects computing, but photonics have additional properties that can be leveraged to greatly accelerate performance and energy efficiency under such difficult loads. This paper describes a novel synchronized global photonic bus and system architecture called P-sync that uses photonics' distance independence to greatly improve performance on many important applications previously limited by electronic interconnect. The architecture is evaluated in the context of a non-local yet common application: the distributed Fast Fourier Transform. We show that it is possible to achieve high efficiency by tightly balancing computation and communication latency in P-sync and achieve upwards of a 6x performance increase on gather patterns, even when bandwidth is equalized.
READ LESS

Summary

Communication in multi- and many-core processors has long been a bottleneck to performance due to the high cost of long-distance electrical transmission. This difficulty has been partially remedied by architectural constructs such as caches and novel interconnect topologies, albeit at a steep cost in terms of complexity. Unfortunately, even these...

READ MORE

Detection theory for graphs

Summary

Graphs are fast emerging as a common data structure used in many scientific and engineering fields. While a wide variety of techniques exist to analyze graph datasets, practitioners currently lack a signal processing theory akin to that of detection and estimation in the classical setting of vector spaces with Gaussian noise. Using practical detection examples involving large, random "background" graphs and noisy real-world datasets, the authors present a novel graph analytics framework that allows for uncued analysis of very large datasets. This framework combines traditional computer science techniques with signal processing in the context of graph data, creating a new research area at the intersection of the two fields.
READ LESS

Summary

Graphs are fast emerging as a common data structure used in many scientific and engineering fields. While a wide variety of techniques exist to analyze graph datasets, practitioners currently lack a signal processing theory akin to that of detection and estimation in the classical setting of vector spaces with Gaussian...

READ MORE

Benchmarking parallel eigen decomposition for residuals analysis of very large graphs

Published in:
HPEC 2012: IEEE Conf. on High Performance Extreme Computing, 10-12 September 2012.

Summary

Graph analysis is used in many domains, from the social sciences to physics and engineering. The computational driver for one important class of graph analysis algorithms is the computation of leading eigenvectors of matrix representations of a graph. This paper explores the computational implications of performing an eigen decomposition of a directed graph's symmetrized modularity matrix using commodity cluster hardware and freely available eigensolver software, for graphs with 1 million to 1 billion vertices, and 8 million to 8 billion edges. Working with graphs of these sizes, parallel eigensolvers are of particular interest. Our results suggest that graph analysis approaches based on eigen space analysis of graph residuals are feasible even for graphs of these sizes.
READ LESS

Summary

Graph analysis is used in many domains, from the social sciences to physics and engineering. The computational driver for one important class of graph analysis algorithms is the computation of leading eigenvectors of matrix representations of a graph. This paper explores the computational implications of performing an eigen decomposition of...

READ MORE

A scalable signal processing architecture for massive graph analysis

Published in:
ICASSP 2012, Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, 25-30 March 2012, pp. 5329-32.

Summary

In many applications, it is convenient to represent data as a graph, and often these datasets will be quite large. This paper presents an architecture for analyzing massive graphs, with a focus on signal processing applications such as modeling, filtering, and signal detection. We describe the architecture, which covers the entire processing chain, from data storage to graph construction to graph analysis and subgraph detection. The data are stored in a new format that allows easy extraction of graphs representing any relationship existing in the data. The principal analysis algorithm is the partial eigendecomposition of the modularity matrix, whose running time is discussed. A large document dataset is analyzed, and we present subgraphs that stand out in the principal eigenspace of the time varying graphs, including behavior we regard as clutter as well as small, tightly-connected clusters that emerge over time.
READ LESS

Summary

In many applications, it is convenient to represent data as a graph, and often these datasets will be quite large. This paper presents an architecture for analyzing massive graphs, with a focus on signal processing applications such as modeling, filtering, and signal detection. We describe the architecture, which covers the...

READ MORE

Eigenspace analysis for threat detection in social networks

Published in:
Int. Conf. on Information Fusion, 5 July 2011.

Summary

The problem of detecting a small, anomalous subgraph within a large background network is important and applicable to many fields. The non-Euclidean nature of graph data, however, complicates the application of classical detection theory in this context. A recent statistical framework for anomalous subgraph detection uses spectral properties of a graph's modularity matrix to determine the presence of an anomaly. In this paper, this detection framework and the related algorithms are applied to data focused on a specific application: detection of a threat subgraph embedded in a social network. The results presented use data created to simulate threat activity among noisy interactions. The detectability of the threat subgraph and its separability from the noise is analyzed under a variety of background conditions in both static and dynamic scenarios.
READ LESS

Summary

The problem of detecting a small, anomalous subgraph within a large background network is important and applicable to many fields. The non-Euclidean nature of graph data, however, complicates the application of classical detection theory in this context. A recent statistical framework for anomalous subgraph detection uses spectral properties of a...

READ MORE

Matched filtering for subgraph detection in dynamic networks

Published in:
2011 IEEE Statistical Signal Processing Workshop (SSP), 28-30 June 2011, pp. 509-512.

Summary

Graphs are high-dimensional, non-Euclidean data, whose utility spans a wide variety of disciplines. While their non-Euclidean nature complicates the application of traditional signal processing paradigms, it is desirable to seek an analogous detection framework. In this paper we present a matched filtering method for graph sequences, extending to a dynamic setting a previous method for the detection of anomalously dense subgraphs in a large background. In simulation, we show that this temporal integration technique enables the detection of weak subgraph anomalies than are not detectable in the static case. We also demonstrate background/foreground separation using a real background graph based on a computer network.
READ LESS

Summary

Graphs are high-dimensional, non-Euclidean data, whose utility spans a wide variety of disciplines. While their non-Euclidean nature complicates the application of traditional signal processing paradigms, it is desirable to seek an analogous detection framework. In this paper we present a matched filtering method for graph sequences, extending to a dynamic...

READ MORE

Showing Results

1-10 of 10