Publications
Very large graphs for information extraction (VLG) - summary of first-year proof-of-concept study
Summary
Summary
In numerous application domains relevant to the Department of Defense and the Intelligence Community, data of interest take the form of entities and the relationships between them, and these data are commonly represented as graphs. Under the Very Large Graphs for Information Extraction effort--a one-year proof-of-concept study--MIT LL developed novel...
Benchmarking parallel eigen decomposition for residuals analysis of very large graphs
Summary
Summary
Graph analysis is used in many domains, from the social sciences to physics and engineering. The computational driver for one important class of graph analysis algorithms is the computation of leading eigenvectors of matrix representations of a graph. This paper explores the computational implications of performing an eigen decomposition of...
PVTOL: providing productivity, performance, and portability to DoD signal processing applications on multicore processors
Summary
Summary
PVTOL provides an object-oriented C++ API that hides the complexity of multicore architectures within a PGAS programming model, improving programmer productivity. Tasks and conduits enable data flow patterns such as pipelining and round-robining. Hierarchical maps concisely describe how to allocate hierarchical arrays across processor and memory hierarchies and provide a...
Parallel VSIPL++: an open standard software library for high-performance parallel signal processing
Summary
Summary
Real-time signal processing consumes the majority of the world's computing power. Increasingly, programmable parallel processors are used to address a wide variety of signal processing applications (e.g., scientific, video, wireless, medical, communication, encoding, radar, sonar, and imaging). In programmable systems, the major challenge is no longer hardware but software. Specifically...
PVL: An Object Oriented Software Library for Parallel Signal Processing (Abstract)
Summary
Summary
Real-time signal processing consumes the majority of the world's computing power Increasingly, programmable parallel microprocessors are used to address a wide variety of signal processing applications (e.g. scientific, video, wireless, medical, communication, encoding, radar, sonar and imaging). In programmable systems the major challenge is no longer hardware but software. Specifically...