Publications
Neural networks, Bayesian a posteriori probabilities, and pattern classification
Summary
Summary
Researchers in the fields of neural networks, statistics, machine learning, and artificial intelligence have followed three basic approaches to developing new pattern classifiers. Probability Density Function (PDF) classifiers include Gaussian and Gaussian Mixture classifiers which estimate distributions or densities of input features separately for each class. Posterior probability classifiers include...
Predicting the risk of complications in coronary artery bypass operations using neural networks
Summary
Summary
Experiments demonstrated that sigmoid multilayer perceptron (MLP) networks provide slightly better risk prediction than conventional logistic regression when used to predict the risk of death, stroke, and renal failure on 1257 patients who underwent coronary artery bypass operations at the Lahey Clinic. MLP networks with no hidden layer and networks...
Figure of merit training for detection and spotting
Summary
Summary
Spotting tasks require detection of target patterns from a background of richly varied non-target inputs. The performance measure of interest for these tasks, called the figure of merit (FOM), is the detection rate for target patterns when the false alarm rate is in an acceptable range. A new approach to...
LNKnet: Neural network, machine-learning, and statistical software for pattern classification
Summary
Summary
Pattern-classification and clustering algorithms are key components of modern information processing systems used to perform tasks such as speech and image recognition, printed-character recognition, medical diagnosis, fault detection, process control, and financial decision making. To simplify the task of applying these types of algorithms in new application areas, we have...
A speech recognizer using radial basis function neural networks in an HMM framework
Summary
Summary
A high performance speaker-independent isolated-word speech recognizer was developed which combines hidden Markov models (HMMs) and radial basis function (RBF) neural networks. RBF networks in this recognizer use discriminant training techniques to estimate Bayesian probabilities for each speech frame while HMM decoders estimate overall word likelihood scores for network outputs...
Improved hidden Markov model speech recognition using radial basis function networks
Summary
Summary
A high performance speaker-independent isolated-word hybrid speech recognizer was developed which combines Hidden Markov Models (HMMs) and Radial Basis Function (RBF) neural networks. In recognition experiments using a speaker-independent E-set database, the hybrid recognizer had an error rate of 11.5% compared to 15.7% for the robust unimodal Gaussian HMM recognizer...
Neural network classifiers estimate Bayesian a posteriori probabilities
Summary
Summary
Many neural network classifiers provide outputs which estimate Bayesian a posteriori probabilities. When the estimation is accurate, network outputs can be treated as probabilities and sum to one. Simple proofs show that Bayesian probabilities are estimated when desired network outputs are 1 of M (one output unity, all others zero)...
Robust speech recognition using hidden Markov models: overview of a research program
Summary
Summary
This report presents an overview of a program of speech recognition research which was initiated in 1985 with the major goal of developing techniques for robust high performance speech recognition under the stress and noise conditions typical of a military aircraft cockpit. The work on recognition in stress and noise...
Review of neural networks for speech recognition
Summary
Summary
The performance of current speech recognition systems is far below that of humans. Neural nets offer the potential of providing massive parallelism, adaptation, and new algorithmic approaches to problems in speech recognition. Initial studies have demonstrated that multi-layer networks with time delays can provide excellent discrimination between small sets of...
Multi-style training for robust isolated-word speech recognition
Summary
Summary
A new training procedure called multi-style training has been developed to improve performance when a recognizer is used under stress or in high noise but cannot be trained in these conditions. Instead of speaking normally during training, talkers use different, easily produced, talking styles. This technique was tested using a...