Publications
Artificial intelligence: short history, present developments, and future outlook, final report
Summary
Summary
The Director's Office at MIT Lincoln Laboratory (MIT LL) requested a comprehensive study on artificial intelligence (AI) focusing on present applications and future science and technology (S&T) opportunities in the Cyber Security and Information Sciences Division (Division 5). This report elaborates on the main results from the study. Since the...
An overview of the DARPA Data Driven Discovery of Models (D3M) Program
Summary
Summary
A new DARPA program called Data Driven Discovery of Models (D3M) aims to develop automated model discovery systems that can be used by researchers with specific subject matter expertise to create empirical models of real, complex processes. Two major goals of this program are to allow experts to create empirical...
Generating a multiple-prerequisite attack graph
Summary
Summary
In one aspect, a method to generate an attack graph includes determining if a potential node provides a first precondition equivalent to one of preconditions provided by a group of preexisting nodes on the attack graph. The group of preexisting nodes includes a first state node, a first vulnerability instance...
Finding malicious cyber discussions in social media
Summary
Summary
Today's analysts manually examine social media networks to find discussions concerning planned cyber attacks, attacker techniques and tools, and potential victims. Applying modern machine learning approaches, Lincoln Laboratory has demonstrated the ability to automatically discover such discussions from Stack Exchange, Reddit, and Twitter posts written in English.
Threat-based risk assessment for enterprise networks
Summary
Summary
Protecting enterprise networks requires continuous risk assessment that automatically identifies and prioritizes cyber security risks, enables efficient allocation of cyber security resources, and enhances protection against modern cyber threats. Lincoln Laboratory created a network security model to guide the development of such risk assessments and, for the most important cyber...
Agent-based simulation for assessing network security risk due to unauthorized hardware
Summary
Summary
Computer networks are present throughout all sectors of our critical infrastructure and these networks are under a constant threat of cyber attack. One prevalent computer network threat takes advantage of unauthorized, and thus insecure, hardware on a network. This paper presents a prototype simulation system for network risk assessment that...
Continuous security metrics for prevalent network threats - introduction and first four metrics
Summary
Summary
The goal of this work is to introduce meaningful security metrics that motivate effective improvements in network security. We present a methodology for directly deriving security metrics from realistic mathematical models of adversarial behaviors and systems and also a maturity model to guide the adoption and use of these metrics...
FY11 Line-Supported Bio-Next Program - Multi-modal Early Detection Interactive Classifier (MEDIC) for mild traumatic brain injury (mTBI) triage
Summary
Summary
The Multi-modal Early Detection Interactive Classifier (MEDIC) is a triage system designed to enable rapid assessment of mild traumatic brain injury (mTBI) when access to expert diagnosis is limited as in a battlefield setting. MEDIC is based on supervised classification that requires three fundamental components to function correctly; these are...
Temporally oblivious anomaly detection on large networks using functional peers
Summary
Summary
Previous methods of network anomaly detection have focused on defining a temporal model of what is "normal," and flagging the "abnormal" activity that does not fit into this pre-trained construct. When monitoring traffic to and from IP addresses on a large network, this problem can become computationally complex, and potentially...
Machine learning in adversarial environments
Summary
Summary
Whenever machine learning is used to prevent illegal or unsanctioned activity and there is an economic incentive, adversaries will attempt to circumvent the protection provided. Constraints on how adversaries can manipulate training and test data for classifiers used to detect suspicious behavior make problems in this area tractable and interesting...