Summary
Pattern-classification and clustering algorithms are key components of modern information processing systems used to perform tasks such as speech and image recognition, printed-character recognition, medical diagnosis, fault detection, process control, and financial decision making. To simplify the task of applying these types of algorithms in new application areas, we have developed LNKnet-a software package that provides access to more than 20 pattern-classification, clustering, and feature-selection algorithms. Included are the most important algorithms from the fields of neural networks, statistics, machine learning, and artificial intelligence. The algorithms can be trained and tested on separate data or tested with automatic cross-validation. LNKnet runs under the UNM operating system and access to the different algorithms is provided through a graphical point-and-click user interface. Graphical outputs include two-dimensional (2-D) scatter and decision-region plots and 1-D plots of data histograms, classifier outputs, and error rates during training. Parameters of trained classifiers are stored in files from which the parameters can be translated into source-code subroutines (written in the C programming language) that can then be embedded in a user application program. Lincoln Laboratory and other research laboratories have used LNKnet successfully for many diverse applications.