Publications

Refine Results

(Filters Applied) Clear All

Initial studies of an objective model to forecast achievable airspace flow program throughput from current and forecast weather information

Published in:
MIT Lincoln Laboratory Report ATC-343

Summary

Airspace capacity constraints caused by adverse weather are a major driver for enhanced Traffic Flow Management (TFM) capabilities. One of the most prominent TFM initiatives introduced in recent years is the Airspace Flow Program (AFP). AFPs are used to plan and manage flights through airspace constrained by severe weather. An AFP is deployed using "strategic" (i.e., 4-6 hour) weather forecasts to determine AFP traffic throughput rates. These rates are set for hourly periods. However, as convective weather continuously evolves, the achievable en route airspace throughput can fluctuate significantly over periods as short as 15-30 minutes. Thus, without tactical AFP adjustments, inefficiencies in available airspace usage can arise, often resulting in increased air traffic delay. An analysis of AFP usage in 2007 was conducted in order to (1) better understand the relationship between AFP parameters and convective weather characteristics, and (2) assess the potential use of an objective model for forecasting tactical AFP throughput. An en route airway blockage-based algorithm, using tactical forecast information from the Corridor Integrated Weather System (CIWS), has been developed in order to objectively forecast achievable flow rates through AFP boundaries during convective weather. A description of the model and preliminary model results are presented.
READ LESS

Summary

Airspace capacity constraints caused by adverse weather are a major driver for enhanced Traffic Flow Management (TFM) capabilities. One of the most prominent TFM initiatives introduced in recent years is the Airspace Flow Program (AFP). AFPs are used to plan and manage flights through airspace constrained by severe weather. An...

READ MORE

Applications of a macroscopic model for en route sector capacity

Published in:
AIAA Guidance, Navigation and Control Conf. and Exhibit, 18-21 August 2008.

Summary

Airspace capacity estimates are important both for airspace design and for operational air traffic management. Considerable effort has gone into understanding the complexity factors that reduce sector capacity by increasing controller workload. Yet no analytical means is available for accurately estimating the maximum capacity of an en route sector. The Monitor Alert Parameter (MAP) values that determine the operational traffic limit of en route sectors in the United States account only for workload from inter-sector coordination tasks. We propose a more complete sector capacity model that also accounts for workload from conflict avoidance and recurring tasks. We use mean closing speeds and airspace separation standards to estimate aircraft conflict rates. We estimate the mean controller service times for all three task types by fitting the model against observed peak traffic counts for hundreds of en route airspace volumes in the Northeastern United States. This macroscopic approach provides numerical capacity predictions that closely bound peak observed traffic densities for those airspace volumes. This paper reviews recent efforts to improve the accuracy of the bound by replacing certain global parameters with measured data from individual sectors. It also compares the model capacity with MAP values for sectors in the New York Center. It concludes by illustrating the use of the model to predict the capacity benefits of proposed technological and operational improvements to the air traffic management system.
READ LESS

Summary

Airspace capacity estimates are important both for airspace design and for operational air traffic management. Considerable effort has gone into understanding the complexity factors that reduce sector capacity by increasing controller workload. Yet no analytical means is available for accurately estimating the maximum capacity of an en route sector. The...

READ MORE

Model estimates of traffic reduction in storm impacted en route airspace

Author:
Published in:
7th AIAA Aviation Technology, Integration, and Operations (ATIO) Conf., 18-20 September 2007.

Summary

An understanding of convective weather impacts on en route airspace capacity is a first step toward development of predictive tools to support both tactical and strategic routing decisions in storm-impacted airspace. This study presents a model for traffic reductions in en route sectors that result from convective weather impacts. A model to predict the impact of convective weather on en route traffic, Traffic Normalized Fractional Route Availability (TNFRA), combines Weather Avoidance Fields (WAF) from the Convective Weather Avoidance Model (CWAM) with a model for route usage in air traffic control (ATC) sectors. The model estimates the number of flights that will be able to pass through convective weather in a given sector. Results show that TNFRA provides a relatively unbiased estimate of sector traffic when compared to actual operations during high impact - convective weather events.
READ LESS

Summary

An understanding of convective weather impacts on en route airspace capacity is a first step toward development of predictive tools to support both tactical and strategic routing decisions in storm-impacted airspace. This study presents a model for traffic reductions in en route sectors that result from convective weather impacts. A...

READ MORE

Macroscopic workload model for estimating en route sector capacity

Published in:
USA/Europe ATM Seminar, 2-5 July 2007.

Summary

Under ideal weather conditions, each en route sector in an air traffic management (ATM) system has a certain maximum operational traffic density that its controller team can safely handle with nominal traffic flow. We call this the design capacity of the sector. Bad weather and altered flow often reduce sector capacity by increasing controller workload. We refer to sector capacity that is reduced by such conditions as dynamic capacity. When operational conditions cause workload to exceed the capability of a sector's controllers, air traffic managers can respond either by reducing demand or by increasing design capacity. Reducing demand can increase aircraft operating costs and impose delays. Increasing design capacity is usually accomplished by assigning more control resources to the airspace. This increases the cost of ATM. To ensure full utilization of the dynamic capacity and efficient use of the workforce, it is important to accurately characterize the capacity of each sector. Airspace designers often estimate sector capacity using microscopic workload simulations that model each task imposed by each aircraft. However, the complexities of those detailed models limit their real-time operational use, particularly in situations in which sector volumes or flow directions must adapt to changing conditions. To represent design capacity operationally in the United States, traffic flow managers define an acceptable peak traffic count for each sector based on practical experience. These subjective thresholds-while usable in decision-making-do not always reflect the complexity and geometry of the sectors, nor the direction of the traffic flow. We have developed a general macroscopic workload model to quantify the workload impact of traffic density, sector geometry, flow direction, and air-to-air conflict rates. This model provides an objective basis for estimating design capacity. Unlike simulation models, this analytical approach easily extrapolates to new conditions and allows parameter validation by fitting to observed sector traffic counts. The model quantifies coordination and conflict workload as well as observed relationships between sector volume and controller efficiency. The model can support real-time prediction of changes in design capacity when traffic is diverted from nominal routes. It can be used to estimate residual airspace capacity when weather partially blocks a sector. Its ability to identify dominant manual workload factors can also help define the benefits and effectiveness of alternative concepts for automating labor-intensive tasks.
READ LESS

Summary

Under ideal weather conditions, each en route sector in an air traffic management (ATM) system has a certain maximum operational traffic density that its controller team can safely handle with nominal traffic flow. We call this the design capacity of the sector. Bad weather and altered flow often reduce sector...

READ MORE

Technical assessment of the impact of decommissioning the TDWR on terminal weather services

Author:
Published in:
MIT Lincoln Laboratory Report ATC-331

Summary

Details of a technical study that was part of a larger investigation assessing terminal weather services impacts of decommissioning the Terminal Doppler Weather Radar (TDWR) are presented. Effects on two key areas for safety and delay-reduction benefits are examined: low-altitude wind shear visibility and the Integrated Terminal Weather System (ITWS) Terminals Winds (TWINS) product. It is concluded that the information conted provided by the TDWR cannot, in general, be effectively replaced by other candidate radar systems such as the Airport Surveillance Radar (ASR-9) equipped with a Weather Systems Processor (WSP) or the Next Generation Weather Radar (NEXRAD).
READ LESS

Summary

Details of a technical study that was part of a larger investigation assessing terminal weather services impacts of decommissioning the Terminal Doppler Weather Radar (TDWR) are presented. Effects on two key areas for safety and delay-reduction benefits are examined: low-altitude wind shear visibility and the Integrated Terminal Weather System (ITWS)...

READ MORE

An assessment of automated boundary and front detection to support convective initiation forecasts

Summary

One of the largest sources of error in the current automated convective weather forecast systems is due to its inability to accurately account for new convective storm development. In many situations the initiation of new convection is preceded by low altitude convergence in the horizontal winds. These regions of low altitude convergence, often referred to as boundaries, are typically associated with synoptic scale fronts, drylines, and thunderstorm outflows. Gridded wind analyses that utilize Doppler weather radar, surface, and aircraft measurements are one of the best sources of low altitude winds that can be used to identify wind boundaries over large domains. This study summarizes the preliminary results of a study which examined the feasibility of using gridded wind analyses from operational wind analysis systems to make automated detections of wind boundaries. The analysis focused on two operational wind analysis systems both capable of producing high update, and high spatial resolution wind analyses over a domain that covers the eastern half of the Continental United Sates (CONUS), the Space Time Mesoscale Analysis System (STMAS) and the Corridor Boundary layer wind analysis system (CBOUND). Wind analyses from both systems were first processed with a Lagrangian temporal filter and then passed through an automated boundary detection algorithm based on the Terminal Doppler Weather Radar (TDWR) Machine Intelligent Gust Front Algorithm (MIGFA). The results indicate that the temporal filter improves the boundary signal to noise ratio such that it is technically feasible to make fully automated boundary detections with image processing techniques.
READ LESS

Summary

One of the largest sources of error in the current automated convective weather forecast systems is due to its inability to accurately account for new convective storm development. In many situations the initiation of new convection is preceded by low altitude convergence in the horizontal winds. These regions of low...

READ MORE

Exploration of a model relating route availability in en route airspace to actual weather coverage parameters

Published in:
86th AMS Annual Mtg., 1st Symp. on Policy Research, January 2006.

Summary

A major concern in contemporary traffic flow management (TFM) is improving decision making when severe convective weather (Wx) impacts en route sectors throughout the National Airspace System (NAS). The FAA is currently seeking to reduce these convective weather delays through the use of multi-hour (e.g. 4 and 6 hour) Wx forecasts coupled with strategic planning by the FAA traffic flow managers and airline personnel to determine how en route traffic should be rerouted so as to avoid sector overloads and minimize the magnitude of the delays that occur [Huberdeau and Gentry (2004)]. One of the major challenges in the strategic planning process is the difficulty in converting the convective weather forecasts into forecasts of en route sector capacity. In this study, we explore the development of a model that can be combined with forecast validation data to translate probabilistic convective weather (Wx) forecasts into forecasts of a surrogate for sector capacity - the fraction of jet routes that would be blocked- within an en route sector.
READ LESS

Summary

A major concern in contemporary traffic flow management (TFM) is improving decision making when severe convective weather (Wx) impacts en route sectors throughout the National Airspace System (NAS). The FAA is currently seeking to reduce these convective weather delays through the use of multi-hour (e.g. 4 and 6 hour) Wx...

READ MORE

Improving air traffic management during thunderstorms

Published in:
24th AIAA/IEEE Digital Avionics Systems Conf., 30 October - 3 November 2005, pp. 3.D.2-1 - 3.D.2-13.

Summary

This paper discusses inter-related studies and development activities that address the significant challenges of implementing Air Traffic Management initiatives in airspace impacted by thunderstorms. We briefly describe current thrusts that will improve the quality and precision of thunderstorm forecasts, work in progress to convert these forecasts into estimates of future airspace capacity, and an initiative to develop a robust ATM optimization model based on future capacity estimates with associated uncertainty bounds. We conclude with a discussion of the thunderstorm ATM problem in the context of future advanced airspace management concepts.
READ LESS

Summary

This paper discusses inter-related studies and development activities that address the significant challenges of implementing Air Traffic Management initiatives in airspace impacted by thunderstorms. We briefly describe current thrusts that will improve the quality and precision of thunderstorm forecasts, work in progress to convert these forecasts into estimates of future...

READ MORE

Advanced terminal weather products demonstration in New York

Published in:
Proc. 11th Conf. on Aviation, Range and Aerospace Meteorology, 4-8 October 2004.

Summary

Weather continues to be a significant source of delay for aircraft destined to and departing from the New York metropolitan area, with weather delays through the first half of 2004 reaching levels not seen since 2000. In Allan et al. (2001), it was shown that total arrival delays on days with low ceiling and visibility at Newark Airport (EWR) averaged 210 hours, increasing to an average of 280 hours on days with thunderstorms impacting EWR operations. An analysis of Ground Delay Programs (GDPs) due to weather in the National Airspace System was performed for 2002-20031. Low ceilings, thunderstorms, snow, and wind were all shown to be significant sources of delay (Figure 1). These same weather conditions that lead to GDPs often also lead to holding and long departure delays. In 1998, demonstration of a prototype Integrated Terminal Weather System (ITWS) began in the New York area, helping significantly reduce terminal delays from convection, high surface winds, and vertical wind shear (Allan et al., 2001). In 2002, a new demonstration system, the Corridor Integrated Weather System (CIWS), was introduced at New York Center (ZNY) to help mitigate convective weather delays in the enroute airspace. Substantial benefits were realized from this system and are documented in Robinson et al. (2004). While systems such as ITWS and CIWS have helped significantly with convective weather, much has been learned during the field-testing of these systems about areas where existing research and technology could be leveraged to reduce weather delay in areas that have not been addressed previously. This paper will discuss four experimental products that recently have been or will be fielded in the NY area and how they are expected to benefit the aviation system. Enhancements to the Terminal Convective Weather Forecast (TCWF) address delays in convective weather, snowstorms, and steady rain. The newly fielded Route Availability Planning Tool (RAPT) addresses departure delays in convective weather. The Ceiling and Visibility (C&V) Diagnosis and Prediction Product will address delay due to low ceiling and visibility. The Path-Based Shear Detection (PSD) tool is expected to help both to reduce delays on days with high winds and to indicate regions of potential low altitude turbulence.
READ LESS

Summary

Weather continues to be a significant source of delay for aircraft destined to and departing from the New York metropolitan area, with weather delays through the first half of 2004 reaching levels not seen since 2000. In Allan et al. (2001), it was shown that total arrival delays on days...

READ MORE

Showing Results

1-9 of 9