Publications

Refine Results

(Filters Applied) Clear All

The Tower Flight Data Manager prototype system

Published in:
DASC 2011, 30th IEEE/AIAA Digital Avionics Systems Conference, 16-20 October 2011, pp. 2C5.

Summary

The Tower Flight Data Manager (TFDM) will serve as the next generation air traffic control tower automation platform for surface and local airspace operations. TFDM provides three primary enhancements over current systems: consolidation of diverse data and information sources into a single platform; electronic data exchange, including flight data entries, within and outside the tower cab; and a suite of decision support capabilities leveraging TFDM's access to external data sources and systems. This paper describes a TFDM prototype system that includes integrated surveillance, flight data, and decision support display components. Enhancements in airport configuration management, runway assignment, taxi routing, sequencing and scheduling, and departure route assurance are expected to yield significant benefits in delay reduction, fuel savings, additional capacity, improved access, enhanced safety, and reduced environmental impact. Data are provided on system performance and air traffic controller acceptance from simulation studies and a preliminary field demonstration at Dallas / Ft. Worth International Airport.
READ LESS

Summary

The Tower Flight Data Manager (TFDM) will serve as the next generation air traffic control tower automation platform for surface and local airspace operations. TFDM provides three primary enhancements over current systems: consolidation of diverse data and information sources into a single platform; electronic data exchange, including flight data entries...

READ MORE

Design and development of the TFDM information management architecture

Published in:
Integrated Communication, Navigation and Surveillance Conf., ICNS, 13-15 May 2009.

Summary

The Tower Flight Data Manager (TFDM) is a new terminal automation platform that will provide an integrated tower-user display suite including an extended electronic flight strip or "flight data management" (FDM) display. The integrated information exchange and processing environment established by TFDM will support a suite of automation-assisted user support tools collectively designated as the Arrival/Departure Management Tool or A/DMT. A/DMT will develop and manage an integrated plan for arrival, scheduled (and to the extent possible) non-scheduled departure operations at the airport, based on 4D-trajectory assignments. A primary concern of A/DMT is the efficient use of the runway complex to meet service demand from both arrivals and departures. In addition, A/DMT seeks to reduce fuel usage and engine emissions on the airport surface, to permit more efficient use of gates and holding areas, and to enhance the safety of surface operations. We first put forth a strategy for developing a scalable TFDM-A/DMT Information Management Architecture (TIMA) employing standard information exchange models, services and data formats. This architecture will be consistent with evolving System Wide Information Management (SWIM) technologies and data standards, and will support efficient insertion of processing algorithms (e.g. surface trajectory management algorithms) developed by the research community and/or industry. Next, we describe TIMA . While TIMA makes use of Service-Oriented Architecture (SOA) principles, it is primarily an information-oriented architecture; we discuss why this architectural style is necessary for TFDM, and how it is also beneficial for SWIM. We conclude with a description of a general model for managing temporal aspects of information within TFDM. TIMA needs to support not only real-time operations, but post-facto analysis as well. A major difficulty in conducting analyses involving different data sources is time synchronization of data. We describe a method for associating temporal information with data sources in a data-agnostic manner, so that data can be retrieved from a variety of sources in a uniform manner.
READ LESS

Summary

The Tower Flight Data Manager (TFDM) is a new terminal automation platform that will provide an integrated tower-user display suite including an extended electronic flight strip or "flight data management" (FDM) display. The integrated information exchange and processing environment established by TFDM will support a suite of automation-assisted user support...

READ MORE

Measuring the utilization of available aviation system capacity in convective weather

Published in:
13th Conf. on Aviation, Range and Aerospace Meteorology, ARAM, 20-24 January 2008.

Summary

There is currently great interest in improving the ability to quantitatively assess how well U.S. Air Traffic Control (ATC) services are being provided as new weather-air traffic management (ATM) decision support capabilities are added. One of the three proposed metrics currently under study by the Federal Aviation Administration (FAA) and airlines is resource utilization, which has been defined as "the safe and efficient use of available airport or airspace capacity." Measurement of capacity utilization is particularly difficult during convective weather since storms cause capacity reductions in both en route and terminal airspace. In particular, en route capacity loss results in network congestion that cannot be readily characterized by scalar metrics. This paper proposes the use of (i) models for translating 3-D weather radar data into time-varying estimates of the capacity reductions in affected en route sectors, terminal airspace, and airports, together with (ii) automatically-generated, broad-area ATM strategies that utilize the time-varying estimates of airspace capacity and demand to determine optimal reroute strategies or, when necessary, minimally disruptive ground or airborne delay programs to assess how the available capacity could best been utilized. By comparing actual vs. optimal capacity utilization, one can assess how effective the actual weather-ATM system was at utilizing the available capacity. Examples of applying this methodology to severe convective weather events from 2005 and 2006 will be presented.
READ LESS

Summary

There is currently great interest in improving the ability to quantitatively assess how well U.S. Air Traffic Control (ATC) services are being provided as new weather-air traffic management (ATM) decision support capabilities are added. One of the three proposed metrics currently under study by the Federal Aviation Administration (FAA) and...

READ MORE

Air traffic management decision support during convective weather

Published in:
Lincoln Laboratory Journal, Vol. 16, No. 2, June 2007, pp. 263-276.

Summary

Flight delays caused by thunderstorms are a significant and growing problem for airlines and the flying public. Thunderstorms disrupt the structured, preplanned flight routing and control process that is used to handle dense air traffic streams in congested airspace. Today's coping strategies are developed by traffic flow management (TFM) specialists who interpret weather measurements and forecasts to develop delay and rerouting strategies. The effectiveness of these strategies is limited by the lack of quantitative models for the capacity impacts of thunderstorms, and by the difficulty of developing and executing timely response strategies during rapidly changing convective weather. In this article, we describe initial work to develop more effective response strategies. We first review insights gained during operational testing of a simple but highly effective Route Availability Planning Tool that can significantly reduce convective-weather induced departure delays at congested airports. We then discuss work to develop core technical capabilities and applications that address broader TFM problems, including en route congestion. Objective models for airspace capacity reductions caused by thunderstorms are discussed, as is an associated scheduling algorithm that exploits the capacity estimates to develop broad-area TFM strategies that minimize delay. We conclude by discussing candidate real-time applications and airspace system performance analysis that is enabled by our weather-capacity models and optimal scheduling algorithm.
READ LESS

Summary

Flight delays caused by thunderstorms are a significant and growing problem for airlines and the flying public. Thunderstorms disrupt the structured, preplanned flight routing and control process that is used to handle dense air traffic streams in congested airspace. Today's coping strategies are developed by traffic flow management (TFM) specialists...

READ MORE

Integrating advanced weather forecast technologies into air traffic management decision support

Published in:
Lincoln Laboratory Journal, Vol. 16, No. 1, June 2006, pp. 81-96.

Summary

Explicit integration of aviation weather forecasts with the National Airspace System (NAS) structure is needed to improve the development and execution of operationally effective weather impact mitigation plans and has become increasingly important due to NAS congestion and associated increases in delay. This article considers several contemporary weather-air traffic management (ATM) integration applications: the use of probabilistic forecasts of visibility at San Francisco, the Route Availability Planning Tool to facilitate departures from the New York airports during thunderstorms, the estimation of en route capacity in convective weather, and the application of mixed-integer optimization techniques to air traffic management when the en route and terminal capacities are varying with time because of convective weather impacts. Our operational experience at San Francisco and New York coupled with very promising initial results of traffic flow optimizations suggests that weather-ATM integrated systems warrant significant research and development investment. However, they will need to be refined through rapid prototyping at facilities with supportive operational users.
READ LESS

Summary

Explicit integration of aviation weather forecasts with the National Airspace System (NAS) structure is needed to improve the development and execution of operationally effective weather impact mitigation plans and has become increasingly important due to NAS congestion and associated increases in delay. This article considers several contemporary weather-air traffic management...

READ MORE

Improving air traffic management during thunderstorms

Published in:
24th AIAA/IEEE Digital Avionics Systems Conf., 30 October - 3 November 2005, pp. 3.D.2-1 - 3.D.2-13.

Summary

This paper discusses inter-related studies and development activities that address the significant challenges of implementing Air Traffic Management initiatives in airspace impacted by thunderstorms. We briefly describe current thrusts that will improve the quality and precision of thunderstorm forecasts, work in progress to convert these forecasts into estimates of future airspace capacity, and an initiative to develop a robust ATM optimization model based on future capacity estimates with associated uncertainty bounds. We conclude with a discussion of the thunderstorm ATM problem in the context of future advanced airspace management concepts.
READ LESS

Summary

This paper discusses inter-related studies and development activities that address the significant challenges of implementing Air Traffic Management initiatives in airspace impacted by thunderstorms. We briefly describe current thrusts that will improve the quality and precision of thunderstorm forecasts, work in progress to convert these forecasts into estimates of future...

READ MORE

A preliminary assessment of thunderstorm outflow wind measurement with airport surveillance radars

Published in:
MIT Lincoln Laboratory Report ATC-140

Summary

Modern airport surveillance radars (ASR), situated on or near most major air terminals, feature coherent pulse-Doppler processing, a vertical-fan beam and rapid azimuthal antenna scanning for detection and tracking of aircraft. These radars might serve an additional useful role by making radial wind measurements in the immediate vicinity of an airport so as to provide data on thunderstorm outflow winds. This report presents a preliminary analysis of the capabilities and limitations of ASRs in measuring outflow winds. Principal results are: (10) radar sensitivity is adequate to measure winds associated with weakly reflecting (5-20 dBZ) thunderstorm outflows at ranges less than 20 km provided that appropriate operating parameters are chosen; (2) overhanging precipitation, often moving at a markedly different radial velocity than the outflow, will be a significant source of interference owing to the verrtical-fan antenna pattern. If radar reflectivity is approximately constant with altitude, this interference will limit the maximum range for reliable outflow velocity measurements to about 20 km for an outflow that extends 1000 m above the surface and to 7 km for an outflow that extends only 300 m above the surface; (3) At two example major air terminals (Memphis International and Denver Stapleton) ground clutter suppression of approximately 40 dB, combined with the use of unter-clutter visibility techniques, would result in ad adequate signal-to-interference ratio for thunderstorm outflow velocity measurement over the significant approach/departure corridors. This result applies when the radar reflectivity factor in the outflow is 20 dBZ or greater and the associated winds extend at least 300 m above the surface.
READ LESS

Summary

Modern airport surveillance radars (ASR), situated on or near most major air terminals, feature coherent pulse-Doppler processing, a vertical-fan beam and rapid azimuthal antenna scanning for detection and tracking of aircraft. These radars might serve an additional useful role by making radial wind measurements in the immediate vicinity of an...

READ MORE

Showing Results

1-7 of 7