Publications

Refine Results

(Filters Applied) Clear All

HF vector sensor for radio astronomy: ground testing results

Summary

The radio sky below ~10 MHz is largely unexplored due to the inability of ground-based telescopes to observe near or below the ionospheric plasma frequency, or cut-off frequency. A space-based interferometric array is required to probe the portion of the electromagnetic (E-M) spectrum below 10 MHz with sufficient angular resolution and sensitivity to be scientifically useful. Multi-spacecraft constellations scale quickly in cost and complexity as the number of spacecraft increases, so minimizing the number of required spacecraft for an interferometric array (while maintaining performance) is critical for feasibility. We present the HF (High Frequency, 3 to 30 MHz) Vector Sensor as a high performance spacecraft instrument in a future space-based interferometric array. The HF Vector Sensor is composed of three orthogonal dipoles and three orthogonal loop antennas with a common phase center. These six elements fully measure the E-M field of incoming radiation. We present the design of two prototype HF Vector Sensors, ground-based data collection at frequencies above the ionospheric cut-off, and imaging results using several different algorithms.
READ LESS

Summary

The radio sky below ~10 MHz is largely unexplored due to the inability of ground-based telescopes to observe near or below the ionospheric plasma frequency, or cut-off frequency. A space-based interferometric array is required to probe the portion of the electromagnetic (E-M) spectrum below 10 MHz with sufficient angular resolution...

READ MORE

Vector antenna and maximum likelihood imaging for radio astronomy

Summary

Radio astronomy using frequencies less than ~100 MHz provides a window into non-thermal processes in objects ranging from planets to galaxies. Observations in this frequency range are also used to map the very early history of star and galaxy formation in the universe. Much effort in recent years has been devoted to highly capable low frequency ground-based interferometric arrays such as LOFAR, LWA, and MWA. Ground-based arrays, however, cannot observe astronomical sources below the ionospheric cut-off frequency of ~10 MHz, so the sky has not been mapped with high angular resolution below that frequency. The only space mission to observe the sky below the ionospheric cut-off was RAE-2, which achieved an angular resolution of ~60 degrees in 1973. This work presents alternative sensor and algorithm designs for mapping the sky both above and below the ionospheric cutoff. The use of a vector sensor, which measures the full electric and magnetic field vectors of incoming radiation, enables reasonable angular resolution (~5 degrees) from a compact sensor (~4 m) with a single phase center. A deployable version of the vector sensor has been developed to be compatible with the CubeSat form factor.
READ LESS

Summary

Radio astronomy using frequencies less than ~100 MHz provides a window into non-thermal processes in objects ranging from planets to galaxies. Observations in this frequency range are also used to map the very early history of star and galaxy formation in the universe. Much effort in recent years has been...

READ MORE

Development and application of spherically curved charge-coupled device imagers

Summary

Operation of a CCD imager on a curved focal surface offers advantages to flat focal planes, especially for lightweight, relatively simple optical systems. The first advantage is that the modulation transfer function can approach diffraction-limited performance for a spherical focal surface employed in large field-of-view or large-format imagers. The second advantage is that a curved focal surface maintains more uniform illumination as a function of radius from the field center. Examples of applications of curved imagers, described here, include a small compact imager and the large curved array used in the Space Surveillance Telescope. The operational characteristics and mechanical limits of an imager deformed to a 15 mm radius are also described.
READ LESS

Summary

Operation of a CCD imager on a curved focal surface offers advantages to flat focal planes, especially for lightweight, relatively simple optical systems. The first advantage is that the modulation transfer function can approach diffraction-limited performance for a spherical focal surface employed in large field-of-view or large-format imagers. The second...

READ MORE

Nanosatellites for Earth environmental monitoring: the MicroMAS project

Summary

The Micro-sized Microwave Atmospheric Satellite (MicroMAS) is a 3U cubesat (34x10x10 cm, 4.5 kg) hosting a passive microwave spectrometer operating near the 118.75-GHz oxygen absorption line. The focus of the first MicroMAS mission (hereafter, MicroMAS-1) is to observe convective thunderstorms, tropical cyclones, and hurricanes from a near-equatorial orbit at approximately 500-km altitude. A MicroMAS flight unit is currently being developed in anticipation of a 2014 launch. A parabolic reflector is mechanically rotated as the spacecraft orbits the earth, thus directing a cross-track scanned beam with FWHM beamwidth of 2.4-degrees, yielding an approximately 20-km diameter footprint at nadir incidence from a nominal altitude of 500 km. Radiometric calibration is carried out using observations of cold space, the earth?s limb, and an internal noise diode that is weakly coupled through the RF front-end electronics. A key technology feature is the development of an ultra-compact intermediate frequency processor module for channelization, detection, and A-to-D conversion. The antenna system and RF front-end electronics are highly integrated and miniaturized. A MicroMAS-2 mission is currently being planned using a multiband spectrometer operating near 118 and 183 GHz in a sunsynchronous orbit of approximately 800-km altitude. A HyMAS- 1 (Hyperspectral Microwave Atmospheric Satellite) mission with approximately 50 channels near 118 and 183 GHz is also being planned. In this paper, the mission concept of operations will be discussed, the radiometer payload will be described, and the spacecraft subsystems (avionics, power, communications, attitude determination and control, and mechanical structures) will be summarized.
READ LESS

Summary

The Micro-sized Microwave Atmospheric Satellite (MicroMAS) is a 3U cubesat (34x10x10 cm, 4.5 kg) hosting a passive microwave spectrometer operating near the 118.75-GHz oxygen absorption line. The focus of the first MicroMAS mission (hereafter, MicroMAS-1) is to observe convective thunderstorms, tropical cyclones, and hurricanes from a near-equatorial orbit at approximately...

READ MORE

Irreversible electrowetting on thin fluoropolymer films

Published in:
Langmuir, Vol. 23, No. 24, 20 November 2007, pp. 12429-12435.

Summary

A study was conducted to investigate electrowetting reversibility associated with repeated voltage actuations for an aqueous droplet situated on a silicon dioxide insulator coated with an amorphous fluoropolymer film ranging in thickness from 20 to 80 nm. The experimental results indicate that irreversible trapped charge may occur at the aqueous-solid interface, giving rise to contact angle relaxation. The accumulation of trapped charge was found to be related to the applied electric field intensity and the breakdown strength of the fluoropolymer. On the basis of the data, an empirical model was developed to estimate the amount of trapped charge in the fluoropolymer as well as the voltage threshold for the onset of irreversible electrowetting.
READ LESS

Summary

A study was conducted to investigate electrowetting reversibility associated with repeated voltage actuations for an aqueous droplet situated on a silicon dioxide insulator coated with an amorphous fluoropolymer film ranging in thickness from 20 to 80 nm. The experimental results indicate that irreversible trapped charge may occur at the aqueous-solid...

READ MORE

Measurement of aerosol-particle trajectories using a structured laser beam

Summary

What is believed to be a new concept for the measurement of micrometer-sized particle trajectories in an inlet air stream is introduced. The technique uses a light source and a mask to generate a spatial pattern of light within a volume in space. Particles traverse the illumination volume and elastically scatter light to a photodetector where the signal is recorded in time. The detected scattering waveform is decoded to find the particle trajectory. A design is presented for the structured laser beam, and the accuracy of the technique in determining particle position is demonstrated. It is also demonstrated that the structured laser beam can be used to measure and then correct for the spatially dependent instrument-response function of an optical-scattering-based particle-sizing system for aerosols.
READ LESS

Summary

What is believed to be a new concept for the measurement of micrometer-sized particle trajectories in an inlet air stream is introduced. The technique uses a light source and a mask to generate a spatial pattern of light within a volume in space. Particles traverse the illumination volume and elastically...

READ MORE

Low voltage electrowetting using thin fluoroploymer films

Published in:
J. Colloid and Interface Sci., Vol. 303, No. 2, 15 November 2006, pp. 517-524.

Summary

This paper investigates the nonideal electrowetting behavior of thin fluoroploymer films. Results are presented for a three phase system consisting of: (1) an aqueous water droplet containing sodium dodecyl sulfate (SDS), (2) phosphorous-doped silicon topped with SiO2 and an amorphous fluoroploymer (aFP) insulating top layer on which the droplet is situated, and (3) a dodecane oil that surrounds the droplet. The presented measurements indicate that the electrowetting equation is valid down to a 6 nm thick aFP film on a 11 nm thick SiO2. At this dielectric thickness, a remarkable contact angle change of over 100degreescan be achieved with an applied voltage less than 3 V across the system. The data also shows that for this water/surfactant/oil system, contact angle saturation is independent of the electric field, and is reached when the surface energy of the solid-water interface approaches zero.
READ LESS

Summary

This paper investigates the nonideal electrowetting behavior of thin fluoroploymer films. Results are presented for a three phase system consisting of: (1) an aqueous water droplet containing sodium dodecyl sulfate (SDS), (2) phosphorous-doped silicon topped with SiO2 and an amorphous fluoroploymer (aFP) insulating top layer on which the droplet is...

READ MORE

Engineering of the electrocapillary behavior of electrolyte droplets on thin fluoropolymer films

Published in:
Langmuir, Vol. 22, No. 13, 20 June 2006, pp. 5690-5696.

Summary

This study presents methods for engineering the electrocapillary behavior of fluoropolymer surfaces through the use of surfactants and an external insulating liquid. By the scaling of the appropriate surface energies, electrocapillary behavior is obtained at a record low voltage, with contact angle changes in excess of 100[degrees] at 4 V. A consistent description of electrocapillary saturation is presented, identifying three separate regimes: breakdown, thermodynamic instability, and relaxation. Methods for identifying and mitigating some of the saturation behaviors are discussed. Finally, the parameters influencing the observed voltage of zero charge are summarized.
READ LESS

Summary

This study presents methods for engineering the electrocapillary behavior of fluoropolymer surfaces through the use of surfactants and an external insulating liquid. By the scaling of the appropriate surface energies, electrocapillary behavior is obtained at a record low voltage, with contact angle changes in excess of 100[degrees] at 4 V...

READ MORE

Demonstration of GPS Automatic Dependent Surveillance of aircraft using spontaneous Mode S broadcast messages

Published in:
Navig. J. Inst. Navig., Vol. 41, No. 2, Summer 1994, pp. 187-206.

Summary

A new Automatic Dependent Surveillance (ADS) system concept combining GPS-based positions with Mode S data communications is described. Several potential applications of this concept are presented with emphasis on surface surveillance at airports. The navigation and data link performance are analyzed. Compact ADS position formats are included. The results of the first tests at Hanscom Field, demonstrating the feasibility of the spontaneous broadcast of ADS positions using Mode S messages are presented. Test aircraft, vehicles, avionics equipment and the ground system configuration are described. Avionics standards and GPS interface requirements are discussed. Multipath and airport surface coverage issues are addressed. Further testing in an operational environment is continuing at Logan Airport.
READ LESS

Summary

A new Automatic Dependent Surveillance (ADS) system concept combining GPS-based positions with Mode S data communications is described. Several potential applications of this concept are presented with emphasis on surface surveillance at airports. The navigation and data link performance are analyzed. Compact ADS position formats are included. The results of...

READ MORE

Demonstration of GPS automatic dependent surveillance of aircraft using spontaneous Mode S beacon reports

Published in:
Proc. ION-GPS-93 Sixth Int. Technical Mtg. of the Satellite Division of the Institute of Navigation, 22-24 September 1993, pp. 1-13.

Summary

A new Automatic Dependent Surveillance (ADS) system concept combining GPS satellite navigation with Mode S data communications is described. Several potential applications of this concept are presented with emphasis on surface surveillance at airports. The navigation and data link performance are analyzed. Compact ADS position formats are included. The results of the first tests at Hanscom Field demonstrating the feasibility of the spontaneous broadcast of ADS positions using Mode S messages are presented. Test aircraft, vehicles, avionics equipment and the ground system configuration are described. Avionics standards and GPS interface requirements are discussed. Multipath and airport surface coverage issues are addressed. Plans for further testing in an operational environment at Logan Airport are outlined.
READ LESS

Summary

A new Automatic Dependent Surveillance (ADS) system concept combining GPS satellite navigation with Mode S data communications is described. Several potential applications of this concept are presented with emphasis on surface surveillance at airports. The navigation and data link performance are analyzed. Compact ADS position formats are included. The results...

READ MORE

Showing Results

1-10 of 10