Publications
SARA: Survivable Autonomic Response Architecture
Summary
Summary
This paper describes the architecture of a system being developed to defend information systems using coordinated autonomic responses. The system will also be used to test the hypothesis that an effective defense against fast, distributed information attacks requires rapid, coordinated, network-wide responses. The core components of the architecture are a...
Detecting low-profile probes and novel denial-of-service attacks
Summary
Summary
Attackers use probing attacks to discover host addresses and services available on each host. Once this information is known, an attacker can then issue a denial-of-service attack against the network, a host, or a service provided by a host. These attacks prevent access to the attacked part of the network...
Analysis and results of the 1999 DARPA off-line intrusion detection evaluation
Summary
Summary
Eight sites participated in the second DARPA off-line intrusion detection evaluation in 1999. Three weeks of training and two weeks of test data were generated on a test bed that emulates a small government site. More than 200 instances of 58 attack types were launched against victim UNIX and Windows...
The 1999 DARPA Off-Line Intrusion Detection Evaluation
Summary
Summary
Eight sites participated in the second Defense Advanced Research Projects Agency (DARPA) off-line intrusion detection evaluation in 1999. A test bed generated live background traffic similar to that on a government site containing hundreds of users on thousands of hosts. More than 200 instances of 58 attack types were launched...
Wordspotter training using figure-of-merit back propagation
Summary
Summary
A new approach to wordspotter training is presented which directly maximizes the Figure of Merit (FOM) defined as the average detection rate over a specified range of false alarm rates. This systematic approach to discriminant training for wordspotters eliminates the necessity of ad hoc thresholds and tuning. It improves the...
Neural networks, Bayesian a posteriori probabilities, and pattern classification
Summary
Summary
Researchers in the fields of neural networks, statistics, machine learning, and artificial intelligence have followed three basic approaches to developing new pattern classifiers. Probability Density Function (PDF) classifiers include Gaussian and Gaussian Mixture classifiers which estimate distributions or densities of input features separately for each class. Posterior probability classifiers include...
Predicting the risk of complications in coronary artery bypass operations using neural networks
Summary
Summary
Experiments demonstrated that sigmoid multilayer perceptron (MLP) networks provide slightly better risk prediction than conventional logistic regression when used to predict the risk of death, stroke, and renal failure on 1257 patients who underwent coronary artery bypass operations at the Lahey Clinic. MLP networks with no hidden layer and networks...
LNKnet: Neural network, machine-learning, and statistical software for pattern classification
Summary
Summary
Pattern-classification and clustering algorithms are key components of modern information processing systems used to perform tasks such as speech and image recognition, printed-character recognition, medical diagnosis, fault detection, process control, and financial decision making. To simplify the task of applying these types of algorithms in new application areas, we have...
Neural network classifiers estimate Bayesian a posteriori probabilities
Summary
Summary
Many neural network classifiers provide outputs which estimate Bayesian a posteriori probabilities. When the estimation is accurate, network outputs can be treated as probabilities and sum to one. Simple proofs show that Bayesian probabilities are estimated when desired network outputs are 1 of M (one output unity, all others zero)...
An introduction to computing with neural nets
Summary
Summary
Artificial neural net models have been studied for many years in the hope of achieving human-like performance in the fields of speech and image recognition. These models are composed of many nonlinear computational elements operating in parallel and arranged in patterns reminiscent of biological neural nets. Computational elements or nodes...