Publications

Refine Results

(Filters Applied) Clear All

Estimating lower vocal tract features with closed-open phase spectral analyses

Published in:
INTERSPEECH 2015: 15th Annual Conf. of the Int. Speech Communication Assoc., 6-10 September 2015.

Summary

Previous studies have shown that, in addition to being speaker-dependent yet context-independent, lower vocal tract acoustics significantly impact the speech spectrum at mid-to-high frequencies (e.g 3-6kHz). The present work automatically estimates spectral features that exhibit acoustic properties of the lower vocal tract. Specifically aiming to capture the cyclicity property of the epilarynx tube, a novel multi-resolution approach to spectral analyses is presented that exploits significant differences between the closed and open phases of a glottal cycle. A prominent null linked to the piriform fossa is also estimated. Examples of the feature estimation on natural speech of the VOICES multi-speaker corpus illustrate that a salient spectral pattern indeed emerges between 3-6kHz across all speakers. Moreover, the observed pattern is consistent with that canonically shown for the lower vocal tract in previous works. Additionally, an instance of a speaker's formant (i.e. spectral peak around 3kHz that has been well-established as a characteristic of voice projection) is quantified here for the VOICES template speaker in relation to epilarynx acoustics. The corresponding peak is shown to be double the power on average compared to the other speakers (20 vs 10 dB).
READ LESS

Summary

Previous studies have shown that, in addition to being speaker-dependent yet context-independent, lower vocal tract acoustics significantly impact the speech spectrum at mid-to-high frequencies (e.g 3-6kHz). The present work automatically estimates spectral features that exhibit acoustic properties of the lower vocal tract. Specifically aiming to capture the cyclicity property of...

READ MORE

A spectral framework for anomalous subgraph detection

Published in:
IEEE Trans. Signal Process., Vol. 63, No. 16, 15 August 2015, 4191-4206.

Summary

A wide variety of application domains is concerned with data consisting of entities and their relationships or connections, formally represented as graphs. Within these diverse application areas, a common problem of interest is the detection of a subset of entities whose connectivity is anomalous with respect to the rest of the data. While the detection of such anomalous subgraphs has received a substantial amount of attention, no application-agnostic framework exists for analysis of signal detectability in graph-based data. In this paper, we describe a framework that enables such analysis using the principal eigenspace of a graph's residuals matrix, commonly called the modularity matrix in community detection. Leveraging this analytical tool, we show that the framework has a natural power metric in the spectral norm of the anomalous subgraph's adjacency matrix (signal power) and of the background graph's residuals matrix (noise power). We propose several algorithms based on spectral properties of the residuals matrix, with more computationally expensive techniques providing greater detection power. Detection and identification performance are presented for a number of signal and noise models, including clusters and bipartite foregrounds embedded into simple random backgrounds, as well as graphs with community structure and realistic degree distributions. The trends observed verify intuition gleaned from other signal processing areas, such as greater detection power when the signal is embedded within a less active portion of the background. We demonstrate the utility of the proposed techniques in detecting small, highly anomalous subgraphs in real graphs derived from Internet traffic and product co-purchases.
READ LESS

Summary

A wide variety of application domains is concerned with data consisting of entities and their relationships or connections, formally represented as graphs. Within these diverse application areas, a common problem of interest is the detection of a subset of entities whose connectivity is anomalous with respect to the rest of...

READ MORE

Iris biometric security challenges and possible solutions: for your eyes only? Using the iris as a key

Summary

Biometrics were originally developed for identification, such as for criminal investigations. More recently, biometrics have been also utilized for authentication. Most biometric authentication systems today match a user's biometric reading against a stored reference template generated during enrollment. If the reading and the template are sufficiently close, the authentication is considered successful and the user is authorized to access protected resources. This binary matching approach has major inherent vulnerabilities. An alternative approach to biometric authentication proposes to use fuzzy extractors (also known as biometric cryptosystems), which derive cryptographic keys from noisy sources, such as biometrics. In theory, this approach is much more robust and can enable cryptographic authorization. Unfortunately, for many biometrics that provide high-quality identification, fuzzy extractors provide no security guarantees. This gap arises in part because of an objective mismatch. The quality of a biometric identification is typically measured using false match rate (FMR) versus false nonmatch rate (FNMR). As a result, biometrics have been extensively optimized for this metric. However, this metric says little about the suitability of a biometric for key derivation. In this article, we illustrate a metric that can be used to optimize biometrics for authentication. Using iris biometrics as an example, we explore possible directions for improving processing and representation according to this metric. Finally, we discuss why strong biometric authentication remains a challenging problem and propose some possible future directions for addressing these challenges.
READ LESS

Summary

Biometrics were originally developed for identification, such as for criminal investigations. More recently, biometrics have been also utilized for authentication. Most biometric authentication systems today match a user's biometric reading against a stored reference template generated during enrollment. If the reading and the template are sufficiently close, the authentication is...

READ MORE

Operational exercise integration recommendations for DoD cyber ranges

Author:
Published in:
MIT Lincoln Laboratory Report TR-1187

Summary

Cyber-enabled and cyber-physical systems connect and engage virtually every mission-critical military capability today. And as more warfighting technologies become integrated and connected, both the risks and opportunities from a cyberwarfare continue to grow--motivating sweeping requirements and investments in cybersecurity assessment capabilities to evaluate technology vulnerabilities, operational impacts, and operator effectiveness. Operational testing of cyber capabilities, often in conjunction with major military exercises, provides valuable connections to and feedback from the operational warfighter community. These connections can help validate capability impact on the mission and, when necessary, provide course-correcting feedback to the technology development process and its stakeholders. However, these tests are often constrained in scope, duration, and resources and require a thorough and holistic approach, especially with respect to cyber technology assessments, where additional safety and security constraints are often levied. This report presents a summary of the state of the art in cyber assessment technologies and methodologies and prescribes an approach to the employment of cyber range operational exercises (OPEXs). Numerous recommendations on general cyber assessment methodologies and cyber range design are included, the most significant of which are summarized below. -Perform bottom-up and top-down assessment formulation methodologies to robustly link mission and assessment objectives to metrics, success criteria, and system observables. -Include threat-based assessment formulation methodologies that define risk and security metrics within the context of mission-relevant adversarial threats and mission-critical system assets. -Follow a set of cyber range design mantras to guide and grade the design of cyber range components. -Call for future work in live-to-virtual exercise integration and cross-domain modeling and simulation technologies. - Call for continued integration of developmental and operational cyber assessment events, development of reusable cyber assessment test tools and processes, and integration of a threat-based assessment approach across the cyber technology acquisition cycle. Finally, this recommendations report was driven by observations made by the MIT Lincoln Laboratory (MIT LL) Cyber Measurement Campaign (CMC) team during an operational demonstration event for the DoD Enterprise Cyber Range Environment (DECRE) Command and Control Information Systems (C2IS). This report also incorporates a prior CMC report based on Pacific Command (PACOM) exercise observations, as well as MIT LL's expertise in cyber range development and cyber systems assessment.
READ LESS

Summary

Cyber-enabled and cyber-physical systems connect and engage virtually every mission-critical military capability today. And as more warfighting technologies become integrated and connected, both the risks and opportunities from a cyberwarfare continue to grow--motivating sweeping requirements and investments in cybersecurity assessment capabilities to evaluate technology vulnerabilities, operational impacts, and operator effectiveness...

READ MORE

Simulation based evaluation of a code diversification strategy

Published in:
5th Int. Conf. on Simulation and Modeling Methodologies, Technologies, and Applications, SIMULTECH 2015, 21-23 July 2015.

Summary

Periodic randomization of a computer program's binary code is an attractive technique for defending against several classes of advanced threats. In this paper we describe a model of attacker-defender interaction in which the defender employs such a technique against an attacker who is actively constructing an exploit using Return Oriented Programming (ROP). In order to successfully build a working exploit, the attacker must guess the locations of several small chunks of program code (i.e., gadgets) in the defended program's memory space. As the attacker continually guesses, the defender periodically rotates to a newly randomized variant of the program, effectively negating any gains the attacker made since the last rotation. Although randomization makes the attacker's task more difficult, it also incurs a cost to the defender. As such, the defender's goal is to find an acceptable balance between utility degradation (cost) and security (benefit). One way to measure these two competing factors is the total task latency introduced by both the attacker and any defensive measures taken to thwart him. We simulated a number of diversity strategies under various threat scenarios and present the measured impact on the defender's task.
READ LESS

Summary

Periodic randomization of a computer program's binary code is an attractive technique for defending against several classes of advanced threats. In this paper we describe a model of attacker-defender interaction in which the defender employs such a technique against an attacker who is actively constructing an exploit using Return Oriented...

READ MORE

Guaranteeing spoof-resilient multi-robot networks

Published in:
2015 Robotics: Science and Systems Conf., 13-17 July 2015.

Summary

Multi-robot networks use wireless communication to provide wide-ranging services such as aerial surveillance and unmanned delivery. However, effective coordination between multiple robots requires trust, making them particularly vulnerable to cyber-attacks. Specifically, such networks can be gravely disrupted by the Sybil attack, where even a single malicious robot can spoof a large number of fake clients. This paper proposes a new solution to defend against the Sybil attack, without requiring expensive cryptographic key-distribution. Our core contribution is a novel algorithm implemented on commercial Wi-Fi radios that can "sense" spoofers using the physics of wireless signals. We derive theoretical guarantees on how this algorithm bounds the impact of the Sybil Attack on a broad class of robotic coverage problems. We experimentally validate our claims using a team of AscTec quadrotor servers and iRobot Create ground clients, and demonstrate spoofer detection rates over 96%.
READ LESS

Summary

Multi-robot networks use wireless communication to provide wide-ranging services such as aerial surveillance and unmanned delivery. However, effective coordination between multiple robots requires trust, making them particularly vulnerable to cyber-attacks. Specifically, such networks can be gravely disrupted by the Sybil attack, where even a single malicious robot can spoof a...

READ MORE

Temporal and multi-source fusion for detection of innovation in collaboration networks

Published in:
Proc. of the 18th Int. Conf. On Information Fusion, 6-9 July 2015.

Summary

A common problem in network analysis is detecting small subgraphs of interest within a large background graph. This includes multi-source fusion scenarios where data from several modalities must be integrated to form the network. This paper presents an application of novel techniques leveraging the signal processing for graphs algorithmic framework, to well-studied collaboration networks in the field of evolutionary biology. Our multi-disciplinary approach allows us to leverage case studies of transformative periods in this scientific field as truth. We build on previous work by optimizing the temporal integration filters with respect to truth data using a tensor decomposition method that maximizes the spectral norm of the integrated subgraph's adjacency matrix. We also demonstrate that we can mitigate data corruption via fusion of different data sources, demonstrating the power of this analysis framework for incomplete and corrupted data.
READ LESS

Summary

A common problem in network analysis is detecting small subgraphs of interest within a large background graph. This includes multi-source fusion scenarios where data from several modalities must be integrated to form the network. This paper presents an application of novel techniques leveraging the signal processing for graphs algorithmic framework...

READ MORE

Analyzing Mission Impacts of Cyber Actions (AMICA)

Published in:
Proc. NATO S&T Workshop on Cyber Attack, Detection, Forensics and Attribution for Assessment of Mission Impact, 15 June 2015.

Summary

This paper describes AMICA (Analyzing Mission Impacts of Cyber Actions), an integrated approach for understanding mission impacts of cyber attacks. AMICA combines process modeling, discrete-event simulation, graph-based dependency modeling, and dynamic visualizations. This is a novel convergence of two lines of research: process modeling/simulation and attack graphs. AMICA captures process flows for mission tasks as well as cyber attacker and defender tactics, techniques, and procedures (TTPs). Vulnerability dependency graphs map network attack paths, and mission-dependency graphs define the hierarchy of high-to-low-level mission requirements mapped to cyber assets. Through simulation of the resulting integrated model, we quantify impacts in terms of mission-based measures, for various mission and threat scenarios. Dynamic visualization of simulation runs provides deeper understanding of cyber warfare dynamics, for situational awareness in the context of simulated conflicts. We demonstrate our approach through a prototype tool that combines operational and systems views for rapid analysis.
READ LESS

Summary

This paper describes AMICA (Analyzing Mission Impacts of Cyber Actions), an integrated approach for understanding mission impacts of cyber attacks. AMICA combines process modeling, discrete-event simulation, graph-based dependency modeling, and dynamic visualizations. This is a novel convergence of two lines of research: process modeling/simulation and attack graphs. AMICA captures process...

READ MORE

Missing the point(er): on the effectiveness of code pointer integrity

Summary

Memory corruption attacks continue to be a major vector of attack for compromising modern systems. Numerous defenses have been proposed against memory corruption attacks, but they all have their limitations and weaknesses. Stronger defenses such as complete memory safety for legacy languages (C/C++) incur a large overhead, while weaker ones such as practical control flow integrity have been shown to be ineffective. A recent technique called code pointer integrity (CPI) promises to balance security and performance by focusing memory safety on code pointers thus preventing most control-hijacking attacks while maintaining low overhead. CPI protects access to code pointers by storing them in a safe region that is protected by instruction level isolation. On x86-32, this isolation is enforced by hardware; on x86-64 and ARM, isolation is enforced by information hiding. We show that, for architectures that do not support segmentation in which CPI relies on information hiding, CPI's safe region can be leaked and then maliciously modified by using data pointer overwrites. We implement a proof-of-concept exploit against Nginx and successfully bypass CPI implementations that rely on information hiding in 6 seconds with 13 observed crashes. We also present an attack that generates no crashes and is able to bypass CPI in 98 hours. Our attack demonstrates the importance of adequately protecting secrets in security mechanisms and the dangers of relying on difficulty of guessing without guaranteeing the absence of memory leaks.
READ LESS

Summary

Memory corruption attacks continue to be a major vector of attack for compromising modern systems. Numerous defenses have been proposed against memory corruption attacks, but they all have their limitations and weaknesses. Stronger defenses such as complete memory safety for legacy languages (C/C++) incur a large overhead, while weaker ones...

READ MORE

Repeatable reverse engineering for the greater good with PANDA

Published in:
37th Int. Conf. on Software Engineering, 16 May 2015.

Summary

We present PANDA, an open-source tool that has been purpose-built to support whole system reverse engineering. It is built upon the QEMU whole system emulator, and so analyses have access to all code executing in the guest and all data. PANDA adds the ability to record and replay executions, enabling iterative, deep, whole system analyses. Further, the replay log files are compact and shareable, allowing for repeatable experiments. A nine billion instruction boot of FreeBSD, e.g., is represented by only a few hundred MB. Furhter, PANDA leverages QEMU's support of thirteen different CPU architectures to make analyses of those diverse instruction sets possible within the LLVM IR. In this way, PANDA can have a single dynamic taint analysis, for example, that precisely supports many CPUs. PANDA analyses are written in a simple plugin architecture which includes a mechanism to share functionality between plugins, increasing analysis code re-use and simplifying complex analysis development. We demonstrate PANDA's effectiveness via a number of use cases, including enabling an old but legitimate version of Starcraft to rund espite a lost CD key, in-depth diagnosis of an Internet Explorer crash, and uncovering the censorship activities and mechanisms of a Chinese IM client.
READ LESS

Summary

We present PANDA, an open-source tool that has been purpose-built to support whole system reverse engineering. It is built upon the QEMU whole system emulator, and so analyses have access to all code executing in the guest and all data. PANDA adds the ability to record and replay executions, enabling...

READ MORE