Publications

Refine Results

(Filters Applied) Clear All

Graph-embedding for speaker recognition

Published in:
INTERSPEECH 2010, 11th Annual Conference of the International Speech Communication Association, 26-30 September 2010, pp. 2742-2745.

Summary

Popular methods for speaker classification perform speaker comparison in a high-dimensional space, however, recent work has shown that most of the speaker variability is captured by a low-dimensional subspace of that space. In this paper we examine whether additional structure in terms of nonlinear manifolds exist within the high-dimensional space. We will use graph embedding as a proxy to the manifold and show the use of the embedding in data visualization and exploration. ISOMAP will be used to explore the existence and dimension of the space. We also examine whether the manifold assumption can help in two classification tasks: data-mining and standard NIST speaker recognition evaluations (SRE). Our results show that the data lives on a manifold and that exploiting this structure can yield significant improvements on the data-mining task. The improvement in preliminary experiments on all trials of the NIST SRE Eval-06 core task are less but significant.
READ LESS

Summary

Popular methods for speaker classification perform speaker comparison in a high-dimensional space, however, recent work has shown that most of the speaker variability is captured by a low-dimensional subspace of that space. In this paper we examine whether additional structure in terms of nonlinear manifolds exist within the high-dimensional space...

READ MORE

The application of statistical relational learning to a database of criminal and terrorist activity

Published in:
SIAM Conf. on Data Mining, 29 April - 1 May 2010.

Summary

We apply statistical relational learning to a database of criminal and terrorist activity to predict attributes and event outcomes. The database stems from a collection of news articles and court records which are carefully annotated with a variety of variables, including categorical and continuous fields. Manual analysis of this data can help inform decision makers seeking to curb violent activity within a region. We use this data to build relational models from historical data to predict attributes of groups, individuals, or events. Our first example involves predicting social network roles within a group under a variety of different data conditions. Collective classification can be used to boost the accuracy under data poor conditions. Additionally, we were able to predict the outcome of hostage negotiations using models trained on previous kidnapping events. The overall framework and techniques described here are flexible enough to be used to predict a variety of variables. Such predictions could be used as input to a more complex system to recognize intent of terrorist groups or as input to inform human decision makers.
READ LESS

Summary

We apply statistical relational learning to a database of criminal and terrorist activity to predict attributes and event outcomes. The database stems from a collection of news articles and court records which are carefully annotated with a variety of variables, including categorical and continuous fields. Manual analysis of this data...

READ MORE

Detection and simulation of scenarios with hidden Markov models and event dependency graphs

Published in:
Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, ICASSP, 15 March 2010, pp. 5434-5437.

Summary

The wide availability of signal processing and language tools to extract structured data from raw content has created a new opportunity for the processing of structured signals. In this work, we explore models for the simulation and recognition of scenarios - i.e., time sequences of structured data. For simulation, we construct two models - hidden Markov models (HMMs) and event dependency graphs. Combined, these two simulation methods allow the specification of dependencies in event ordering, simultaneous execution of multiple scenarios, and evolving networks of data. For scenario recognition, we consider the application of multi-grained HMMs. We explore, in detail, mismatch between training scenarios and simulated test scenarios. The methods are applied to terrorist scenario detection with a simulation coded by a subject matter expert.
READ LESS

Summary

The wide availability of signal processing and language tools to extract structured data from raw content has created a new opportunity for the processing of structured signals. In this work, we explore models for the simulation and recognition of scenarios - i.e., time sequences of structured data. For simulation, we...

READ MORE

Modeling and detection techniques for counter-terror social network analysis and intent recognition

Summary

In this paper, we describe our approach and initial results on modeling, detection, and tracking of terrorist groups and their intents based on multimedia data. While research on automated information extraction from multimedia data has yielded significant progress in areas such as the extraction of entities, links, and events, less progress has been made in the development of automated tools for analyzing the results of information extraction to ?connect the dots.? Hence, our Counter-Terror Social Network Analysis and Intent Recognition (CT-SNAIR) work focuses on development of automated techniques and tools for detection and tracking of dynamically-changing terrorist networks as well as recognition of capability and potential intent. In addition to obtaining and working with real data for algorithm development and test, we have a major focus on modeling and simulation of terrorist attacks based on real information about past attacks. We describe the development and application of a new Terror Attack Description Language (TADL), which is used as a basis for modeling and simulation of terrorist attacks. Examples are shown which illustrate the use of TADL and a companion simulator based on a Hidden Markov Model (HMM) structure to generate transactions for attack scenarios drawn from real events. We also describe our techniques for generating realistic background clutter traffic to enable experiments to estimate performance in the presence of a mix of data. An important part of our effort is to produce scenarios and corpora for use in our own research, which can be shared with a community of researchers in this area. We describe our scenario and corpus development, including specific examples from the September 2004 bombing of the Australian embassy in Jakarta and a fictitious scenario which was developed in a prior project for research in social network analysis. The scenarios can be created by subject matter experts using a graphical editing tool. Given a set of time ordered transactions between actors, we employ social network analysis (SNA) algorithms as a filtering step to divide the actors into distinct communities before determining intent. This helps reduce clutter and enhances the ability to determine activities within a specific group. For modeling and simulation purposes, we generate random networks with structures and properties similar to real-world social networks. Modeling of background traffic is an important step in generating classifiers that can separate harmless activities from suspicious activity. An algorithm for recognition of simulated potential attack scenarios in clutter based on Support Vector Machine (SVM) techniques is presented. We show performance examples, including probability of detection versus probability of false alarm tradeoffs, for a range of system parameters.
READ LESS

Summary

In this paper, we describe our approach and initial results on modeling, detection, and tracking of terrorist groups and their intents based on multimedia data. While research on automated information extraction from multimedia data has yielded significant progress in areas such as the extraction of entities, links, and events, less...

READ MORE

Cognitive services for the user

Published in:
Chapter 10, Cognitive Radio Technology, 2009, pp. 305-324.

Summary

Software-defined cognitive radios (CRs) use voice as a primary input/output (I/O) modality and are expected to have substantial computational resources capable of supporting advanced speech- and audio-processing applications. This chapter extends previous work on speech applications (e.g., [1]) to cognitive services that enhance military mission capability by capitalizing on automatic processes, such as speech information extraction and understanding the environment. Such capabilities go beyond interaction with the intended user of the software-defined radio (SDR) - they extend to speech and audio applications that can be applied to information that has been extracted from voice and acoustic noise gathered from other users and entities in the environment. For example, in a military environment, situational awareness and understanding could be enhanced by informing users based on processing voice and noise from both friendly and hostile forces operating in a given battle space. This chapter provides a survey of a number of speech- and audio-processing technologies and their potential applications to CR, including: - A description of the technology and its current state of practice. - An explanation of how the technology is currently being applied, or could be applied, to CR. - Descriptions and concepts of operations for how the technology can be applied to benefit users of CRs. - A description of relevant future research directions for both the speech and audio technologies and their applications to CR. A pictorial overview of many of the core technologies with some applications presented in the following sections is shown in Figure 10.1. Also shown are some overlapping components between the technologies. For example, Gaussian mixture models (GMMs) and support vector machines (SVMs) are used in both speaker and language recognition technologies [2]. These technologies and components are described in further detail in the following sections. Speech and concierge cognitive services and their corresponding applications are covered in the following sections. The services covered include speaker recognition, language identification (LID), text-to-speech (TTS) conversion, speech-to-text (STT) conversion, machine translation (MT), background noise suppression, speech coding, speaker characterization, noise management, noise characterization, and concierge services. These technologies and their potential applications to CR are discussed at varying levels of detail commensurate with their innovation and utility.
READ LESS

Summary

Software-defined cognitive radios (CRs) use voice as a primary input/output (I/O) modality and are expected to have substantial computational resources capable of supporting advanced speech- and audio-processing applications. This chapter extends previous work on speech applications (e.g., [1]) to cognitive services that enhance military mission capability by capitalizing on automatic...

READ MORE