Publications
The JHU-MIT System Description for NIST SRE19 AV
Summary
Summary
This document represents the SRE19 AV submission by the team composed of JHU-CLSP, JHU-HLTCOE and MIT Lincoln Labs. All the developed systems for the audio and videoconditions consisted of Neural network embeddings with some flavor of PLDA/cosine back-end. Primary fusions obtained Actual DCF of 0.250 on SRE18 VAST eval, 0.183...
State-of-the-art speaker recognition for telephone and video speech: the JHU-MIT submission for NIST SRE18
Summary
Summary
We present a condensed description of the joint effort of JHUCLSP, JHU-HLTCOE, MIT-LL., MIT CSAIL and LSE-EPITA for NIST SRE18. All the developed systems consisted of xvector/i-vector embeddings with some flavor of PLDA backend. Very deep x-vector architectures–Extended and Factorized TDNN, and ResNets– clearly outperformed shallower xvectors and i-vectors. The...
Supervector LDA - a new approach to reduced-complexity i-vector language recognition
Summary
Summary
In this paper, we extend our previous analysis of Gaussian Mixture Model (GMM) subspace compensation techniques using Gaussian modeling in the supervector space combined with additive channel and observation noise. We show that under the modeling assumptions of a total-variability i-vector system, full Gaussian supervector scoring can also be performed...
Exploring the impact of advanced front-end processing on NIST speaker recognition microphone tasks
Summary
Summary
The NIST speaker recognition evaluation (SRE) featured microphone data in the 2005-2010 evaluations. The preprocessing and use of this data has typically been performed with telephone bandwidth and quantization. Although this approach is viable, it ignores the richer properties of the microphone data-multiple channels, high-rate sampling, linear encoding, ambient noise...
Linear prediction modulation filtering for speaker recognition of reverberant speech
Summary
Summary
This paper proposes a framework for spectral enhancement of reverberant speech based on inversion of the modulation transfer function. All-pole modeling of modulation spectra of clean and degraded speech are utilized to derive the linear prediction inverse modulation transfer function (LP-IMTF) solution as a low-order IIR filter in the modulation...
The MITLL NIST LRE 2011 language recognition system
Summary
Summary
This paper presents a description of the MIT Lincoln Laboratory (MITLL) language recognition system developed for the NIST 2011 Language Recognition Evaluation (LRE). The submitted system consisted of a fusion of four core classifiers, three based on spectral similarity and one based on tokenization. Additional system improvements were achieved following...
A new perspective on GMM subspace compensation based on PPCA and Wiener filtering
Summary
Summary
We present a new perspective on the subspace compensation techniques that currently dominate the field of speaker recognition using Gaussian Mixture Models (GMMs). Rather than the traditional factor analysis approach, we use Gaussian modeling in the sufficient statistic supervector space combined with Probabilistic Principal Component Analysis (PPCA) within-class and shared...
Automatic detection of depression in speech using Gaussian mixture modeling with factor analysis
Summary
Summary
Of increasing importance in the civilian and military population is the recognition of Major Depressive Disorder at its earliest stages and intervention before the onset of severe symptoms. Toward the goal of more effective monitoring of depression severity, we investigate automatic classifiers of depression state, that have the important property...
The MIT LL 2010 speaker recognition evaluation system: scalable language-independent speaker recognition
Summary
Summary
Research in the speaker recognition community has continued to address methods of mitigating variational nuisances. Telephone and auxiliary-microphone recorded speech emphasize the need for a robust way of dealing with unwanted variation. The design of recent 2010 NIST-SRE Speaker Recognition Evaluation (SRE) reflects this research emphasis. In this paper, we...
The MITLL NIST LRE 2009 language recognition system
Summary
Summary
This paper presents a description of the MIT Lincoln Laboratory language recognition system submitted to the NIST 2009 Language Recognition Evaluation (LRE). This system consists of a fusion of three core recognizers, two based on spectral similarity and one based on tokenization. The 2009 LRE differed from previous ones in...