Summary
We have measured the acid generation efficiency with EUV exposure of a PAG in different polymer matrixes representing the main classes of resist polymers as well as some previously described fluoropolymers for lithographic applications. The polymer matrix was found to have a significant effect on the acid generation efficiency of the PAG studied. A linear relationship exists between the absorbance of the resist and the acid generation efficiency. A second inverse relationship exists between Dill C and aromatic content of the resist polymer. It was shown that polymer sensitization is important for acid generation with EUV exposure and the Dill C parameter can be increased by up to five times with highly absorbing non-aromatic polymers, such as non-aromatic fluoropolymers, over an ESCAP polymer. The increase in the Dill C value will lead to an up to five fold increase in resist sensitivity. It is our expectation that these insights into the nature of polymer matrix effects on acid generation could lead to increased sensitivity for EUV resists.