Publications

Refine Results

(Filters Applied) Clear All

Operation of an optical atomic clock with a Brillouin laser subsystem

Summary

Microwave atomic clocks have traditionally served as the 'gold standard' for precision measurements of time and frequency. However, over the past decade, optical atomic clocks have surpassed the precision of their microwave counterparts by two orders of magnitude or more. Extant optical clocks occupy volumes of more than one cubic metre, and it is a substantial challenge to enable these clocks to operate in field environments, which requires the ruggedization and miniaturization of the atomic reference and clock laser along with their supporting lasers and electronics. In terms of the clock laser, prior laboratory demonstrations of optical clocks have relied on the exceptional performance gained through stabilization using bulk cavities, which unfortunately necessitates the use of vacuum and also renders the laser susceptible to vibration-induced noise. Here, using a stimulated Brillouin scattering laser subsystem that has a reduced cavity volume and operates without vacuum, we demonstrate a promising component of a portable optical atomic clock architecture. We interrogate a 88Sr+ ion with our stimulated Brillouin scattering laser and achieve a clock exhibiting short-term stability of 3.9 × 10−14 over one second—an improvement of an order of magnitude over state-of-the-art microwave clocks. This performance increase within a potentially portable system presents a compelling avenue for substantially improving existing technology, such as the global positioning system, and also for enabling the exploration of topics such as geodetic measurements of the Earth, searches for dark matter and investigations into possible long-term variations of fundamental physics constants.
READ LESS

Summary

Microwave atomic clocks have traditionally served as the 'gold standard' for precision measurements of time and frequency. However, over the past decade, optical atomic clocks have surpassed the precision of their microwave counterparts by two orders of magnitude or more. Extant optical clocks occupy volumes of more than one cubic...

READ MORE

Reduction of trapped-ion anomalous heating by in situ surface plasma cleaning

Published in:
Phys. Rev. A, At. Mol. Opt. Phys., Vol. 92, No. 2, 2015, 020302.

Summary

Anomalous motional heating is a major obstacle to scalable quantum information processing with trapped ions. Although the source of this heating is not yet understood, several previous studies suggest that noise due to surface contaminants is the limiting heating mechanism in some instances. We demonstrate an improvement by a factor of 4 in the room-temperature heating rate of a niobium surface electrode trap by in situ plasma cleaning of the trap surface. This surface treatment was performed with a simple homebuilt coil assembly and commercially available matching network and is considerably gentler than other treatments, such as ion milling or laser cleaning, that have previously been shown to improve ion heating rates. We do not see an improvement in the heating rate when the trap is operated at cryogenic temperatures, pointing to a role of thermally activated surface contaminants in motional heating whose activity may freeze out at low temperatures.
READ LESS

Summary

Anomalous motional heating is a major obstacle to scalable quantum information processing with trapped ions. Although the source of this heating is not yet understood, several previous studies suggest that noise due to surface contaminants is the limiting heating mechanism in some instances. We demonstrate an improvement by a factor...

READ MORE

Measurement of ion motional heating rates over a range of trap frequencies and temperatures

Published in:
Phys. Rev. A, At. Mol. Opt. Phys., Vol. 91, No. 4, April 2015, 041402.

Summary

We present measurements of the motional heating rate of a trapped ion at different trap frequencies and temperatures between ~0.6 and 1.5 MHz and ~4 and 295 K. Additionally, we examine the possible effect of adsorbed surface contaminants with boiling points below ~105 degrees C by measuring the ion heating rate before and after locally baking our ion trap chip under ultrahigh vacuum conditions. We compare the heating rates presented here to those calculated from available electric-field noise models. We can tightly constrain a subset of these models based on their expected frequency and temperature scaling interdependence. Discrepancies between the measured results and predicted values point to the need for refinement of theoretical noise models in order to more fully understand the mechanisms behind motional trapped-ion heating.
READ LESS

Summary

We present measurements of the motional heating rate of a trapped ion at different trap frequencies and temperatures between ~0.6 and 1.5 MHz and ~4 and 295 K. Additionally, we examine the possible effect of adsorbed surface contaminants with boiling points below ~105 degrees C by measuring the ion heating...

READ MORE

Insensitivity of the rate of ion motional heating to trap-electrode material over a large temperature range

Author:
Published in:
Phys. Rev. A, At. Mol. Opt. Phys., Vol. 89, No. 1, 2014, 012318.

Summary

We present measurements of trapped-ion motional-state heating rates in niobium and gold surface-electrode ion traps over a range of trap-electrode temperatures from approximately 4 K to room temperature (295 K) in a single apparatus. Using the sideband-ratio technique after resolved-sideband cooling of single ions to the motional ground state, we find low-temperature heating rates more than two orders of magnitude below the room-temperature values and approximately equal to the lowest measured heating rates in similarly sized cryogenic traps. We find similar behavior in the two very different electrode materials, suggesting that the anomalous heating process is dominated by non-material-specific surface contaminants. Through precise control of the temperature of cryopumping surfaces, we also identify conditions under which elastic collisions with the background gas can lead to an apparent steady heating rate, despite rare collisions.
READ LESS

Summary

We present measurements of trapped-ion motional-state heating rates in niobium and gold surface-electrode ion traps over a range of trap-electrode temperatures from approximately 4 K to room temperature (295 K) in a single apparatus. Using the sideband-ratio technique after resolved-sideband cooling of single ions to the motional ground state, we...

READ MORE

Loading of a surface-electrode ion trap from a remote, precooled source

Published in:
Phys. Rev. A, At. Mol. Opt. Phys., Vol. 86, No. 1, 20 July 2012, 013417.
Topic:
R&D group:

Summary

We demonstrate loading of ions into a surface-electrode trap (SET) from a remote, laser-cooled source of neutral atoms. We first cool and load ~10^6 neutral 88Sr atoms into a magneto-optical trap from an oven that has no line of sight with the SET. The cold atoms are then pushed with a resonant laser into the trap region where they are subsequently photoionized and trapped in an SET operated at a cryogenic temperature of 4.6 K. We present studies of the loading process and show that our technique achieves ion loading into a shallow (15 meV depth) trap at rates as high as 125 ions/s while drastically reducing the amount of metal deposition on the trap surface as compared with direct loading from a hot vapor. Furthermore, we note that due to multiple stages of isotopic filtering in our loading process, this technique has the potential for enhanced isotopic selectivity over other loading methods. Rapid loading from a clean, isotopically pure, and precooled source may enable scalable quantum-information processing with trapped ions in large, low-depth surface-trap arrays that are not amenable to loading from a hot atomic beam.
READ LESS

Summary

We demonstrate loading of ions into a surface-electrode trap (SET) from a remote, laser-cooled source of neutral atoms. We first cool and load ~10^6 neutral 88Sr atoms into a magneto-optical trap from an oven that has no line of sight with the SET. The cold atoms are then pushed with...

READ MORE

Showing Results

1-5 of 5